

@IJRTER-2016, All Rights Reserved 60

DYNAMATE : Automatic Checking loop invariants using

Mutation,Dynamic Analysis and static checking

P.Sasidhar reddy 1, C.Silpa2 , Venkatesh .G3

1Department of IT, Sree Vidyanikethan Engineering College, Tirupathi, 517501, India
2Department of IT, JNTUA College of Engineering, Anantapur, 515002, India

3Department of IT, Sree Vidyanikethan Engineering College, Anantapur, 515002, India

Abstract: aAutomatic program verification, proving program correct still requires substantial expert

manual effort. One of the biggest burden is providing loop invariants properties that hold for every

iteration of a loop. Compared to other requirement elements such as pre -and post conditions, loop

invariants tend to be difficult to understand and to express. The proposed system automates the

functional verification of incomplete correctness of programs with loops by inferring the required

loop invariants. In this approach it combines complementary techniques such as test case generation,

dynamic invariant detection, and static verification. This approach can be implemented by a tool

called DYNAMATE. DYNAMATE improves the flexibility of loop invariant inference by

combining static (proving) and dynamic (testing) techniques. The DYNAMATE tool presented in

this process combines different techniques with the overall goal of providing fully automatic

verification of programs with loops

Keywords – Loop Invariants, Mutation testing,, Full functional ,Dynamic analysis, Static checking,

Dynamate

I. INTRODUCTION

Every large software system has a small set of functions on whose correctness it depends. To prove

that such function conform to their specification, automated proves require loop invariants

properties that hold for every iteration of loop Dynamte infers loop invariants by systematically

mutating post conditions dynamic checking based on automatically generated tests weed out invalid

candidates and retains the valid invariants. dynamate paves the way for fully automatic verification.

The current Dynamate prototype integrates the evo suit test case generator the daikon invariants

detector and the esc/java2 static verifier as well as our implementation of the gin-pink techniques to

dynamically detect loop invariants based on syntactically mutation post condition

 Verifiers that can confirm programs correct against their full functional specification require,

for programs with loops extra annotations in the form of loop invariants. For programs with loops,

one of the biggest burdens is providing loop invariants property that hold for every iteration of a loop

Compared to pre- and post conditions, it is much more difficult to write loop invariants, In this

approach evolution automation of full program verification through loop invariants [1]. This

approach is based on included of static (program proving) and dynamic(testing) techniques The

current DynaMate prototype combine the EvoSuite[6] test case generator, the Daikon invariant

detector[7] and the ESC/Java2 static verifier[8]. Fully automatic verifiers such as cccheck or

BLAST fail to establish the correctness of the annotated program., auto-active verifiers such as

ESC/Java2 succeed,

In Exiting system Verifiers that can confirm programs correct against their full functional

specification require programs with loops Programs with loops, one of the main burdens is providing

loop invariants properties that hold for every iteration of a loop. this mainly drawback Loop

invariants should be complicated to analyze. The proposed system automates the functional

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 61

verification of partial truth of programs with loops by inferring the required loop invariants In this

approach it combines complementary techniques such as test case generation, dynamic invariant

detection, and static verification This approach can be implement by a tool called DYNAMATE, a

fully automatic verifier for Java programs with loops. DYNAMATE improves the flexibility of loop

invariant inference by integrate static (proving) and dynamic (testing) techniques this advantage of

Identify Loop invariants program with easy analysis Dynamate is best performance with other tool.

1.1Evo suite

This new approach in the EVOSUITE tool, and compared it to the common approach of addressing

one goal at a time. Evaluated on open source libraries The EVOSUITE tool implements the

approach presented in generating JUnit test suites for Java code. EVOSUITE works on the byte-code

level and collect all necessary information for the test cluster from the byte-code via Java indication

During test generation, EVOSUITE considers one top level class at a time. The class and all its

unnamed and member classes are instrumented at byte-code level to keep track of called methods

and branch distances during execution. To produce test cases as compliable JUnit source code,

EVOSUITE accesses only the public interfaces for test generation; any subclasses are also careful

part of the unit under test to allow testing of abstract classes. To execute the tests throughout the

search, EVOSUITE uses Java Reflection.

This technique to automate test generation. shown that optimizing whole test suites toward a

coverage criterion is superior to the traditional approach of targeting one coverage goal at a FRASER

AND ARCURI: WHOLE TEST SUITE GENERATION time. In our experiments, this results in

significantly better overall coverage with smaller test suites.

1.1.2 Diakon

Daikon is an execution of dynamic detection of likely invariants; that is, the Daikon invariant

detector reports likely program invariants. An invariant is a assets that holds at a certain point or

points in a program; these are often seen in declare statements, documentation, and formal

specifications. Dynamic invariant detection runs a program, observes the values that the program

computes ,and then information properties that were true over the observed executions. Daikon can

detect property in C, C++, C#, Eiffel, F#, Java, Perl, and Visual Basic programs

This section gives gradually instructions for installing Daikon. Here is an summary of the steps.

Details appear below;

Select the instructions for your operating system.

1. Download Daikon.

2. Place three commands in your shell initialization file.

3. Optionally, modify your installation.

4. Optionally, compile Daikon and construct other tools.

Requirements for running Daikon In order to run Daikon, you must have a Java 7 (or later) JVM

(Java Virtual Machine).You must also have a Java 7 (or later) compiler

Figure 1 : Daikon’s Infrastructure

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 62

Daikon proposes to automatically determine program invariants and report them in a meaningful

manner.

Detect invariants from program executions by instrumenting the source program to trace the

variables of interest, running the instrumented program over a set of test cases, and inferring

invariants over both the instrumented variables and derived variables that are not manifest in the

original program.

1.1.3 ESC/java2

ESC/Java2 is a tool for static verification program specifications. It expands significantly upon

ESC/Java, on which it is built. It is reliable with the definition of JML and of Java 1.4. It adds

additional static checking to that in ESC/Java; most considerably, it adds support for checking frame

conditions and annotations containing method calls. This document describes the position of the final

release of ESC/Java2, along with some notes regarding the details of that implementation JML

should be easy to use for any Java programmer JML assertions are added as comments in .java file,

between /*@ . . . @*/, or after //@, Properties are specified as Java boolean expressions, extended

with a few operators (\old, \forall, \result,. . .). using a a small number of keywords (requires,

ensures, signals, assignable, pure, invariant, non null, . . .)

The goal of the ESC/Java2 work is to expand the use of ESC/Java by a. updating the parser of

ESC/Java so that it is consistent with the present definition of JML and Java, b. packaging the

updated tool so that it is more easily available to a big set of users, consistent with the source code

license provisions of the ESC/Java source code, c. and extending the choice of JML annotations that

can be checked by the tool, where possible and where consistent with the engineering goals of

ESC/Java. the status of their implementation in ESC/Java2, the degree to which the annotation is

logically checked, and any differences between ESC/Java2and JML.

ESC/Java2 is a tool for statically checking program specifications. It expands significantly upon

ESC/java,on which it is built. It is consistent with the definition of JML and of Java 1.4. It adds

additional static checking to that in ESC/Java; most significantly, it adds support for checking frame

conditions and annotations containing method calls. This document describes the status of the final

release of ESC/Java2, along with some notes regarding the details of that implementation

1.2 Overview of The Dynamate

DYNAMATE inputs a program M and its specification—a precondition P and a post condition Q.

Two outcomes of the algorithm are possible: achievement means that DYNAMATE has found a set

of valid loop invariants that are sufficient to statically verify M beside its specification (P,Q); failure

means that DYNAMATE cannot find new valid loop invariants, and those found are insufficient for

static verification. DYNAMATE’s main loop starts by executing the test case generator, which

produces a new set T. of test cases that implement M with inputs satisfying the precondition P. The

loop feds on the whole set TS of test cases generated so far to the dynamic invariant detector, which

outputs a set of candidate loop invariants I To find out which candidates are indeed valid,

DYNAMATE calls the static verifier on the program annotated with all candidates I the verifier

income a set of proved candidates J (a subset of I), which DYNAMATE adds to the set Inv of

established loop invariants. Then, using the current Inv, it calls the static verifier again, this time

trying a full rightness proof of M against (P,Q). If verification succeeds, DYNAMATE terminates

with success a static verifier that is sound but incomplete, unproved candidates in In INV are not

necessarily invalid.

Algorithm: dynamate

Require: program M, precondition p, postcondtion q,

TS (set of test case)

INV (set of verified loop invariants

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 63

C (set of candidate)

While static verification can’t prove (M,P,Q,INV)

T execute test case generator on (M,TS)

If I has not changed then

Return (“failure”,IVN)

End if

M’ annotate M with candidate invariants I

J statically check valid invariants of (M’,P)

INV INV ᴗ J

C I\INV

End while

 Return (“success” ,INV)

1.2.1Running Example: Binary Search

binarySearch0, a helper method declared in class java.util.Arrays in the standard Java

1 /* @

2 @ requires a ≠null;

3 @ requires TArrays.within(a, fromIndex, toIndex);

4 @ requires TArrays.sorted(a, fromIndex, toIndex);

5 @

6 @ ensures \result ≥ 0 =) a[\result] = key;

7 @ ensures \result ≤ 0 =) :TArrays.has(a, fromIndex,

 toIndex, key);

8 @*/

9 private static int binarySearch0

10 (int[] a, int fromIndex, int toIndex, int key) {

11 int low = fromIndex, high = toIndex - 1;

12 while (low ≤high) {

13 // midpoint of [low..high]

14 int mid = (low + high) >>> 1;

15 int midVal = a[mid];

16 if (midVal < key) low = mid + 1;

17 else if (midVal > key) high = mid - 1;

18 else return mid; // key found

19 }

20 return -(low + 1); // key not found

21 }

Figure 2: Binary search method in java.util.Arrays annotated

 with pre- and postcondition.

22 //@ loop_invariant fromIndex ≤low

23 //@ loop_invariant low ≤ high +1

24 //@ loop_invariant high < toIndex

25 //@ loop_invariant :TArrays.has(a, fromIndex, low, key)

26 //@ loop_invariant :TArrays.has(a, high + 1, toIndex,

 key)
Figure 3: Loop invariants required for verifying method binarySearch0.

JML [2], using model-based predicates [3], representing implicit quantified expressions, with

descriptive names. For example, the condition :TArrays. has(a, fromIndex,toIndex, key) means that

array a has no element key over the interval range from fromIndex (included) to toIndex (excluded).

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 64

II. RELATED WORK

DYNAMATE is center this section on the problem of inferring loop invariants to automate

functional verification

2.1 Integrating Diakon and ESC/java

Dynamic detection propose likely invariants based on program executions, but the resulting

properties are not guaranteed to be true of over all possible executions Static verification checks that

properties are always true, but it can be difficult and dull to select a goal and to annotate programs

for input to a static checker. Combining these techniques overcomes the weakness of each. how to

integrate two complementary techniques for manipulating program invariants: dynamic invariants

detection and static verification[74] Static verification of dynamically detected program invariants:

Integrating Daikon and ESC/Java

2.2 Identifying loop invariants

Identifying for invariants using genetic programming and mutation testing[80] As most programs are

not annotated with invariants, before research has attempted to automatically produce them from

source code In this new approach to invariant generation using search. reuse the test generation

front-end of existing tool Daikon and integrate it with genetic programming and a mutation testing

tool There are two exceptional problems to be solved : firstly, to reduce the number of uninteresting

invariants produced and secondly, to show the search to invariants that may be interesting but

deceptive" to the search

2.3 verification java program

Proof of Java programs using symbolic execution and invariant generation[9] Software verification is

recognized as an impart and complicated problem Presented a novel framework based on symbolic

execution , for the verification of software This framework explanation in the from of technique

specification and loop invariants. Our framework is built on top of the java path finder form

checking toolset and it was used for the verification several non-trivial java program

2.4 static techniques

Combination of static techniques. HAVOC using a static verifier to check if candidate assertions are

valid: it creates an early set of candidates (possibly including loop invariants) by applying a fixed set

of rules to the available component-level contract (i.e. component, invariants and interface

specifications). Like DYNAMATE, HAVOC[12] applies the HOUDINI algorithm to establish which

candidates are valid. Using only static techniques.

2.5 Dynamic Techniques

The GUESS-AND-CHECK [13] algorithm infers invariants in the form of algebraic equalities

(polynomials up to a given degree) The GUESS-AND-CHECK algorithm proceeds iteratively in two

phases The “guess” phase uses linear algebra techniques to competently derive a candidate invariant

from data. This candidate invariant is subsequently validated in a “check” phase dynamical discovery

invariants instrumental techniques While the overall structure of GUESS-AND CHECK has some

similarities to ours, DYNAMATE targets general-purpose programs, which requires very different

techniques. The work on DAIKON [7].

2.6 Hybrid Techniques

CEGAR techniques has combined static verification and test case generation. The SYNERGY

algorithm [14] .The DASH algorithm builds on SYNERGY to handle programs with pointers

without whole-program may-alias analysis Two broad approaches to property checking are testing

and verification Testing works best when errors are easy to find, but it is often difficult to get

sufficient coverage for correct programs verification methods are most successful when proofs are

easy to find, but they are often incompetent at discovering errors.

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 65

III. HOW DYNAMATE WORK

The DYNAMATE tool present with combines different techniques with the overall goal of providing

fully automatic verification of programs with loops. The only required input to DYNAMATE is a

Java program(method) annotated with a JML functional specification (pre- and post condition).

DYNAMATE will try to construct a correctness proof of the program with respect to the

specification; to this end it will infer necessary loop invariants. Even in the cases where it fails to

find all required loop invariants, DYNAMATE still may find some useful invariants and use them to

discard some proof obligations, thus providing partial verification.

Advantages of DYNAMATE. The integration of techniques and tools in DYNAMATE

compensates for individual shortcomings and achieves a greater whole in terms of flexibility and

degree of automation. Dynamic techniques are capable of conclusively invalidating large amounts of

loop invariant candidates, thus winnowing a smaller set of candidate invariants that hold in all

executions, and can test candidates in isolation (dependencies are not an issue). This leaves the static

verifier with a more manageable task in terms of number of candidates to check at once. The GIN-

DYN component is an original contribution of DYNAMATE. Based on the observation that loop

invariants can often be seen as weakened forms post conditions [1], GIN-DYN derives loop invariant

candidates by mutating post conditions. This enables inferring loop invariants that are not limited to

predefined templates but stem from the annotated Java program under analysis. DYNAMATE still

avails of the advantages of static techniques in terms of soundness: the static verification module

scrutinizes the output of the dynamic parts until it can verify it (and uses verified invariants to

construct a correctness proof).

The program code is first fed into a test case generator , which generates executions covering

official behavior. From these, two dynamic invariant detector tools mine possible loop invariants,

based both on fixed patterns (DAIKON)[7] as well as post conditions (GIN-DYN)[5] The candidates

are not invalidated by the generated runs and then fed into a symbolic program verifier The verifier

then may create a program proof (bottom right), but may also disprove candidates, which initiates

another round of executions, and thus developed invariants.

Figure 4 :Dynamate work

If the verifier fails to verify the program correct, a round of four steps begins

Step 1: test cases: To carry dynamic invariant detection, a test case generator construct executions

of the program that satisfy the given precondition.

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 66

Step 2: candidate invariants. From the resulting executions, an invariant detector animatedly mines

candidates for loop invariants.

Step 3: invariant verification. The existing set of loop invariant candidates are fed into a static

program verifier.

Step 4: program verification and modification. Using the verified invariants, the static verifier

may also be competent to produce a proof that the program is accurate with respect to its

specification. If the proof does fail using the loop invariants inferred so far, another round

generating, mining, and verifying starts.

How DYNAMATE works, using binarySearch0 as running example

3.1 Input: Programs and Specifications
DYNAMATE receives as input a Java method M with its functional specification consisting of

precondition P and postcondition Q. Pre- and postcondition are written in JML. P and Q generally

consist of a number of clauses, each denoted by the keyword requires (precondition) and ensures

(postcondition) . While DYNAMATE can work with JML specifications in any form, to find it

efficient to follow the principles of the model-based approach to specification

Following the model-based specification style entails three main advantages for our work. First, it

improves the abstraction and clarity of specifications, and hence it also facilitates reuse with

dissimilar implementations it should be clear that has(a, fromIndex, toIndex, key) means that array a

contain a value key within fromIndex and toIndex.

Second, model-based specifications also make it easy to resolve static and a runtime semantics.

When developing predicates in TArrays we defined each predicate as a static boolean method with

both a Java implementation and a JML specification

 Fromindex <= I <=toindex^key=a[i];

A third advantage of using model-based specifications is leveraged by the DYNAMATE approach

and more precisely by the GIN-DYN invariant detector described.

3.2Test Case Generation

The DYNAMATE algorithm needs tangible executions to dynamically gather loop invariants

DAIKON mines relations that hold in all passing test cases and GIN-DYN filters out invalid loop

invariant candidates that are inaccurate by a test case While any test case generator could work with

DYNAMATE, our prototype integrates EVOSUITE [6], a completely automatic search-based tool

using a inherent algorithm

Since EVOSUITE tries to maximize branch coverage, it has a good chance of produce tests that pass

all precondition checks and thus represent valid executions according to the specification

3.3 Dynamic Loop Invariant Inference

The DYNAMATE algorithm lies a component that detects “likely” loop invariants based on the

actual executions provided by the test case generator. The present DYNAMATE implementation in

two modules with balancing functionalities.

DAIKON’s and GIN-DYN’s invariants are complementary; for example, neither one suffices for a

correctness proof of binarySearch0. DAIKON invariants are usually an essential basis to establish

GIN-DYN

How DYNAMATE uses GIN-DYN and DAIKON.

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 67

Dynamic invariants detection with DAIKON

DAIKON [7] is a broadly used dynamic invariant detector which supports a set of basic invariant

templates. Given a test suite and a set of program locations as input, DAIKON instantiates its

templates with program variables, and traces their values at the locations in each and every one

executions of the tests.

Since DYNAMATE needs loop invariants, it instructs DAIKON to draw variables at four different

location of each loop: before loop entry, at loop entry, at loop exit, and after loop exit.

TABLE 1 loop invariant candidates produced by DAIKON in the first iteration of DYNAMATE.

GIN-DYN: Invariants from Postconditions

GIN-DYN: a way to efficiently generate a large amount of invalid or uninteresting invariant

candidates how GINDYN does the filtering, again based on a mixture of dynamic and static

techniques. The relax of the current section briefly discusses how invariant candidates formed by

GIN-DYN are used within DYNAMATE. In truth, GIN-DYN produces the two fundamental

invariants on lines in Figure 4 necessary for a truth proof of binarySearch0. The final set of verified

loop invariants includes those of with 28 more, consisting of 13 invariants establish by DAIKON and

20 invariants found by GIN-DYN.

3.3Static Program Verification

The DYNAMATE algorithm complement dynamic analysis with a static program verifier, which

serves two purposes: (1) verifying loop invariant candidates, and (2) using verified loop invariants to

carry out a conclusive truth proof.

proof of Loop Invariants

The DYNAMATE prototype relies on the ESC/Java2 static verifier, which works on Java programs

and JML annotations.

DYNAMATE always calls ESC/Java2 with the –loop Safe option enabled.

Program Proof

At the end of each iteration, DYNAMATE uses the present set of valid loop invariants to attempt a

correctness proof of the program beside its specification. If ESC/Java2 succeeds, the whole

DYNAMATE algorithm stops with success

Refining the Search for Loop Invariants

Original loop invariant candidates may be over specific and hence unsound— Since this may

indicate unknown program behavior, for every such candidate L, DYNAMATE adds the conditional

check

3.4 Using Dynamate

Present DYNAMATE in action on the implementation of binary search available in class

java.util.Array from java’s JDK

The input to dynamate consists of method binarySearch0 Annotated with JML specification

Figure.3.when it starts, Dynamate open an HTML report which show the program and specification

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 68

whith all elements (statements or annotations) that trigger an ESC/java2 warning highlighted in

Yellow. Clicking on a highlighted elements display its currents status ,including ESC/java2’s

warning message. After each iteration of its main loop(Figure 4), Dynamate Updates the reports

elements for which all Associated ESC/java2warinng have been discharges are highlighted in green .

In addition ,users can inspects the generated loop invariants by clicking on any loop header. By

default only verified loop invariants are shown (n green).candidate invariants can be viewed (in

yellow)by de-selecting a check-box .These candidates have not been falsified by test ,nor have they

been verified by ESC/java2 .

Figure 5.shows a report after the first iteration onbinarySearch0: DYNAMATE has proven several

simple scalar invariants for the selected loop.

Figure. 5: DYNAMATE’s report after iteration # 1 obinarySearch0.

Verified statements and annotations (first and last highlighted element) are shown in green,

unverified ones in yellow. Loop headers are highlighted in light blue. The right frame shows the

proven loop invariants for the selected loop

IV. SUMMARY OF CONTRIBUTION

The main analysis of this paper are:

1) DYNAMATE: an algorithm to automatically discharge proof obligations for programs with

loops, based on a grouping of dynamic and static techniques.

2) GIN-DYN: an automatic technique to increase the dynamic detection of loop invariants, based on

the idea of syntactically mutating post conditions [8].

3) This implementation of the DYNAMATE algorithm that integrates the EVOSUITE test case

generator, the DAIKON dynamic invariant detector, and the ESC/Java2 static verifier, as well as

GIN-DYN.

4) An evaluation of our DYNAMATE prototype on a case study linking 28 methods with loops

from java.util classes.

5) A comparison against state-of-the-art tools for automatic verification based on predicate abstract

V. CONCLUSION AND FUTURE WORK

This problem overcomes three techniques and used test case generated, dynamic invariants detection,

and static verification this three techniques as development our prototype Dynamate automatically

discharged 97 percent of all proof obligations for 28methodswith loops from java.util classes

 International Journal of Recent Trends in Engineering & Research (IJRTER)
Volume 02, Issue 04; April - 2016 [ISSN: 2455-1457]

@IJRTER-2016, All Rights Reserved 69

Our future work will focus on the following issues:

Better test generators. As any module in DYNAMATE can be replaced by a better implementation

of the same functionalities, currently investigating dynamic/symbolic approaches to test case

generation [16] as well as hybrid techniques integrating search-based and symbolic approaches [17].

More diverse invariant generators

This techniques based on symbolic execution such as the one implemented in DYSY [19]to provide

for more, and more diversified, loop invariant candidates.

Stronger component integration

DYNAMATE can become a platform on which several approaches to test generation, dynamic

analysis, and static verification can work in synergy[14] to produce a greater whole

Availability: The current prototype of DYNAMATE is available for download at

http://www.st.cs.uni-saarland.de/dynamate-tool/.

REFERENCE
1. C. A. Furia, B. Meyer, and S. Velder, “Loop invariants: Analysis, classification, and examples,” ACM Comp. Sur.,

vol. 46, no. 3, p. Article 34, January 2014. 19

2. G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of JML:” a behavioral interface specification

language for Java,” ACM SIGSOFT Software Engineering Notes, vol. 31, no. 3, pp. 1–38, 2006.

3. N. Polikarpova, C. A. Furia, and B. Meyer, “Specifying reusable components,” in VSTTE, ser. LNCS, vol. 6217.

Springer, 2010, pp. 127–141

4. P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll, “Beyond assertions: Advanced specification and verification

with JML and ESC/Java2,” in FMCO, ser. LNCS. Springer, 2006, pp. 342–363.

5. C. A. Furia and B. Meyer, “Inferring loop invariants Using postcondition in Fields of Logic and Computation,

vol. 6300. New York, NY, USA: Springer, 2010, pp. 277– 300

6. G. Fraser and A. Arcuri, “Evolutionary generation of whole test suites,” in Proc. 11th Int. Conf. Quality, 2011 ,

pp. 31–40

7. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,“ Dynamically discovering likely program invariants t

Support program evolution,” IEEE Trans. Softw. Eng., vol. 27, no. 2, pp. 99– 23, Feb. 2001.

8. D. R. Cok, J. R. Kiniry, and D. Cochran. (2008, Oct.). ESC/Java2 implementation notes. Kind Softw., Tech.

Rep.[Online]. Available: http://goo.gl/BFn1zh

9. C. S. Pasareanu and W. Visser, “Verification of Java programs using symbolic execution and invariant generation,”

in Proc. 11th Int. SPIN Workshop, 2004, pp . 164–181.

10. K. Hoder, L. Kovács, and A. Voronkov, “Invariant generation in Vampire,” in TACAS, ser. LNCS, vol. 6605.

Springer, 2011, pp. 60–64.

11. S. Srivastava and S. Gulwani, “Program verification using templates over predicate abstraction,” in PLDI. ACM,

2009, pp. 223–234

12. S. K. Lahiri, S. Qadeer, J. P. Galeotti, J. W. Voung, and T Wies, “Intra-module inference,” in Proc. Int.

Conf.Comput Aided Verification, 2009, pp. 493–508.

13. R. Sharma, S. Gupta, B. Hariharan, A. Aiken, and A. Nori , “A data driven approach for algebraic loop invariants,”

in Proc. 22nd Eur. Conf. Programm. Languages Syst., 2013 , pp. 574–592.

14. B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori and S. K. Rajamani, “Synergy : A new algorithm for

property checking,” in Proc. 14th ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2006, pp. 117–127

15. J. W. Nimmer and M. D. Ernst, “Static verification of dynamically detected program invariants: Integrating

Daikon and ESC/Java,”in Proc. 1st Workshop Runtime Verification, pp. 255–276, 2001

16. K. Jamrozik, G. Fraser, N. Tillmann, and J. de Halleux, “Generating test suites with augmented dynamic symbolic

Execution,” in Proc. Tests Proofs, 2013, pp. 152–167.

17. J. Malburg and G. Fraser, “Combining search-based and constraint- based testing,” in Proc. 26th IEEE/ACM Int.

Conf. Automated Softw. Eng., 2011, pp. 436–439

18. S. Ratcliff, D. R. White, and J. A. Clark, “Searching for invariants using genetic programming and mutation

testing,” in Proc. 13th Annu. Conf. Genetic Evolutionary Comput., 2011, pp. 1907–1914.

19. C. Csallner, N. Tillmann, and Y. Smaragdakis, “DySy dynamic symbolic execution for invariant inference,” in

ICSE. ACM, 2008, pp. 281–290.

