OPEN SETS IN BITOPOLOGICAL SPACES

N.Venkatesan¹, G. Ramya²

¹Department of mathematics, PRIST University, Thanjavur
²Department of mathematics, PRIST University, Thanjavur

Abstract — In this paper, we introduce $\tau_1 \tau_2 - Q^*$ open sets in bitopological spaces and study its properties.

Keywords — $\tau_1 \tau_2 - Q^*$ open sets.

I. INTRODUCTION

A triple (X, τ_1, τ_2) where X is a non-empty set and τ_1, τ_2 are topologies on X is called a bitopological space and Kelly initiated the study of such spaces. Maheswari and Prasad [11] introduced semi open sets in bitopological spaces in 1977.

Closed sets are fundamental objects in a topological space. For example, one can define the topology on a set by using either the axioms for the closed sets or the Kuratowski closure axioms. In 1971, Levine [10] introduced the concept of generalized closed sets in topological spaces. Also he introduced the notion of semi open sets in topological spaces. Bhattacharyya and Lahiri [3] introduced a class of sets called semi generalized closed sets by means of semi open sets of Levine and obtained various topological properties.

In 1985, Fukutake [7] introduced the concepts of g-closed sets in bitopological spaces and after that several authors turned their attention towards generalizations of various concepts of topology by considering bitopological spaces.

In 2004 [19], Sheik John M and Sundaram P introduced g^* closed sets in bitopological spaces. The notion of Q^*-closed sets in a topological space was introduced by Murugalingam and Lalitha [12] in 2010.

Recently, P. Padma and S. Udayakumar [15] introduced the concept of $(\tau_1, \tau_2)^* - Q^*$ closed sets in bitopological spaces.

In the present paper, we introduced $\tau_1 \tau_2 - Q^*$ open sets in bitopological spaces and studied some of their bitopological properties. Also some relations are established with known generalized closed sets.

II. PRELIMINARIES

Throughout this paper X and Y always represent nonempty bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2). For a subset A of X, $\tau_1 - \text{cl} (A)$, $\tau_1 - Q^* \text{cl} (A)$ (resp. $\tau_1 - \text{int} (A)$), $\tau_1 - Q^* \text{int} (A)$ represents closure of A and Q^* closure of A (resp. interior of A, Q^*-interior of A) with respect to the topology τ_1. We shall now require the following known definitions.

Definition 2.1 - A set A of a bitopological space (X, τ_1, τ_2) is called

a) $\tau_1 \tau_2$- semi open if there exists an τ_1-open set U such that $U \subseteq A \subseteq \tau_2 - \text{cl} (A)$. Equivalently, a set A is $\tau_1 \tau_2$-semi open if $A \subseteq \tau_2 - \text{cl} (\tau_1 - \text{int} (A))$.

b) $\tau_1 \tau_2$- semi closed if $X - A$ is $\tau_1 \tau_2$-semi open.

c) $\tau_1 \tau_2$- generalized open ($\tau_1 \tau_2$- g open) if $X - A$ is $\tau_1 \tau_2$-generalized closed.

d) $\tau_1 \tau_2$- generalized closed ($\tau_1 \tau_2$- g closed) if $\tau_2 - \text{cl} (A) \subseteq U$ whenever $A \subseteq U$ and U is τ_1-open in X.

DOI: 10.23883/IJRTER.2017.3334.N0GDQ
e) $\tau_1 \tau_2$-generalized open ($\tau_1 \tau_2$-g open) if $X - A$ is $\tau_1 \tau_2$-g closed.

f) $\tau_1 \tau_2$-semi generalized closed ($\tau_1 \tau_2$-sg closed) if τ_2-scl (A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_1-semi open in X.

g) $\tau_1 \tau_2$-semi generalized open ($\tau_1 \tau_2$-sg open) if $X - A$ is $\tau_1 \tau_2$-sg closed.

h) $\tau_1 \tau_2$-generalized semi closed ($\tau_1 \tau_2$-gs closed) if τ_2-cl (A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_1-open in X.

i) $\tau_1 \tau_2$-generalized semi open ($\tau_1 \tau_2$-gs open) if $X - A$ is $\tau_1 \tau_2$-gs closed.

j) $\tau_1 \tau_2$-regular open if $A = \tau_1 \tau_2$-int [τ_2-cl (A)].

k) $\tau_1 \tau_2$-regular closed if $A = \tau_1 \tau_2$-cl [τ_2-int (A)].

l) $\tau_1 \tau_j$-g* closed sets if τ_j-cl (A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_1-g open in X.

m) $\tau_1 \tau_j$-g* open ($\tau_1 \tau_j$-g* open) if $X - A$ is $\tau_1 \tau_j$-g* closed.

III. $\tau_1 \tau_j$- Q^*S OPEN SETS

In this section, the concepts of $\tau_1 \tau_j$- Q^*s open sets are introduced and their basic properties in bitopological spaces are discussed. Recall that a set A is a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_j$- Q^* closed if τ_1-int (A) = ϕ and A is τ_2-closed. The family of all $\tau_1 \tau_j$- Q^*s closed subsets of a bitopological space (X, τ_1, τ_2) is denoted by $\tau_1 \tau_j$- Q^*s.

Definition 3.1 - A subset A of a bitopological space (X, τ_1, τ_2) is called $\tau_1 \tau_j$- Q^* closed if τ_1-int (A) = ϕ and A is τ_2-closed.

Example 3.1 - Let $X = \{ a, b, c \}$, $\tau_1 = \{ \phi, X, \{ c \} \}$, $\tau_2 = \{ \phi, X, \{ a \}, \{ b \}, \{ a, b \} \}$. Hence ϕ, $\{ a \}$ and $\{ b \}$ are $\tau_1 \tau_j$- Q^* closed.

Definition 3.2 - A subset A of a bitopological spaces (X, τ_1, τ_2) is called $\tau_1 \tau_j$- Q^*s open if $X - A$ is $\tau_1 \tau_j$- Q^*s closed in X.

Example 3.2 - In example 3.1, X, $\{ b, c \}$, $\{ c, a \}$ are $\tau_1 \tau_j$- Q^*s open.

Remark 3.1 - Since every $\tau_1 \tau_j$- Q^*s open set is τ_2-open and every τ_2-open set is $\tau_1 \tau_2$-g open, $\tau_1 \tau_2$-sg open, $\tau_1 \tau_2$-gs open. The converse need not be true in general. The following example supports our claim.

Example 3.3 - In example 3.1, $\{ a, b \}$ is $\tau_1 \tau_2$-g open, $\tau_1 \tau_2$-sg open and $\tau_1 \tau_2$-gs open but not $\tau_1 \tau_1$- Q^*s open.

Theorem 3.1 - A set A of a bitopological space (X, τ_1, τ_2) is $\tau_1 \tau_j$- Q^*s open if and only if τ_1-cl (A) = X and A is τ_2-semi open.

Proof : Necessity : Suppose that A is $\tau_1 \tau_j$- Q^*s open.

Then A^c is $\tau_1 \tau_j$- Q^*s closed.

Therefore, τ_1-int (A^c) = $[\tau_1$-cl (A)]c = ϕ and A^c is τ_2-semi closed.

Consequently, τ_1-cl (A) = X and A is τ_2-semi open.

Sufficiency : Suppose that τ_1-cl (A) = X and A is τ_2-semi open.

Then $[\tau_1$-cl (A)]c = τ_1-int (A^c) = ϕ and A^c is τ_2-semi closed.

Consequently, A^c is $\tau_1 \tau_j$- Q^*s closed.

This completes the proof.

Corollary 3.1 - A set A of a bitopological space (X, τ_1, τ_2) is $\tau_1 \tau_j$- Q^*s open if and only if A is τ_1-dense and τ_2-semi open.

Theorem 3.2 - If A and B are $\tau_1 \tau_j$- Q^*s open sets then so is $A \cap B$.

Proof : Suppose that A and B are $\tau_1 \tau_j$- Q^*s open sets.

Then A^c and B^c are $\tau_1 \tau_j$- Q^*s closed sets.

Therefore, $A^c \cup B^c$ is $\tau_1 \tau_j$- Q^*s closed sets.

But $A^c \cup B^c = (A \cup B)^c$.

Hence $A \cap B$ is $\tau_1 \tau_j$- Q^*s open.
Theorem 3.3
i) \(X \) is not \(\tau_1 \tau_j - Q^* \)’s closed.
ii) \(\phi \) is \(\tau_1 \tau_j - Q^* \)’s closed.
iii) \(X \) is \(\tau_1 \tau_j - Q^* \)’s open
iv) \(X \) is not \(\tau_1 \tau_j - Q^* \)’s open.

Remark 3.2 - It is obvious that every \(\tau_1 \tau_j - Q^* \)’s open set is \(\tau_2 \) - open, but the converse is not true in general.

Remark 3.3 - Every \(\tau_1 \tau_j - Q^* \)’s open is \(\tau_1 \tau_2 \) - semi open. But the converse need not be true. The following example supports our claim.

Example 3.4 - In example 3.1, \(\{ b , c \} \) is \(\tau_1 \tau_2 \) - semi open but not \(\tau_1 \tau_j - Q^* \)’s open.

Remark 3.4 - \(\tau_1 \tau_2 - g^* \) open sets and \(\tau_1 \tau_j - Q^* \)’s open sets are independent of each other in general.

It is proved in the following example.

Example 3.5 - \(X = \{ a , b , c \} \), \(\tau_1 = \{ \phi , X , \{ c \} , \{ a , c \} \} \), \(\tau_2 = \{ \phi , X , \{ a \} \} \). Then \(\{ a , c \} \) is \(\tau_1 \tau_2 - g^* \) open but not \(\tau_1 \tau_j - Q^* \)’s open set.

Remark 3.5 - \(\tau_1 \tau_2 - g^* \) open sets and \(\tau_1 \tau_j - Q^* \)’s open sets are independent of each other in general.

It is proved in the following example.

Example 3.6 - \(X = \{ a , b , c \} \), \(\tau_1 = \{ \phi , X , \{ c \} , \{ a , c \} \} \), \(\tau_2 = \{ \phi , X , \{ a \} \} \). Then \(\{ a \} \) is \(\tau_1 \tau_2 - g^* \) open but not \(\tau_1 \tau_j - Q^* \)’s open set.

Theorem 3.4 - If \(B \subseteq A \subseteq X \), where \(A \) is \(\tau_1 \tau_j - Q^* \)’s open and \(B \) is \(\tau_1 \tau_j - Q^* \)’s open in \(A \) then \(B \) is \(\tau_1 \tau_j - Q^* \)’s open in \(X \).

Proof: Since \(B \) is \(\tau_2 \) - open in \(A \), \(A \) is \(\tau_2 \) - open in \(X \) and \(B \) is \(\tau_2 \) - open in \(X \).

We claim that \(\tau_1 - \text{cl} (B) = X \).

Let \(U \) be any \(\tau_2 \) - semi open set.

Since \(\tau_1 - \text{cl} (B) \) is \(A \), \((U \cap A) \cap B \neq \phi \).

Then \((U \cap A) \cap B \neq \phi \).

Hence \(\tau_1 - \text{cl} (B) = X \).

Therefore, \(B \) is \(\tau_1 \tau_j - Q^* \)’s open in \(X \).

Theorem 3.5 - If \(A \) and \(B \) are \(\tau_2 \) - open sets with \(A \cap B = \phi \) then \(A \) and \(B \) are not \(\tau_1 \tau_j - Q^* \)’s open.

Proof: Since \(A \cap B = \phi \), the points of \(B \) cannot be limit points of \(A \).

Then \(\tau_1 - \text{cl} (A) \neq X \).

Hence \(A \) is not \(\tau_1 \tau_j - Q^* \)’s open.

Similarly, \(B \) is not \(\tau_1 \tau_j - Q^* \)’s open.

Theorem 3.6 - Let \((X, \tau_1, \tau_2) \) be a hyper connected bitopological space. Let \(A \subseteq X \). If \(A \) is \(\tau_2 \) - open then \(A \) is \(\tau_1 \tau_j - Q^* \)’s open in \(X \).

Proof: It is enough to prove that \(A \) is \(\tau_1 \) - dense.

Suppose that \(\tau_1 - \text{cl} (A) \neq X \).

Then \(\{ \tau_1 - \text{cl} (A) \} \neq \phi \).

Consequently, \(A \cap \{ \tau_1 - \text{cl} (A) \} \neq \phi \).

This is a contradiction to the fact that \((X, \tau_1, \tau_2) \) is a hyper connected bitopological space.

Hence \(A \) is \(\tau_1 \) - dense.

REFERENCES
16. P. Padma and S. Udayakumar, "\((\tau_1, \tau_2)\)*-Q* continuous maps in bitopological spaces", International Journal of Mathematical Archive (Accepted).