A STUDY ON MINIMUM COVERING ENERGY OF A GRAPH

Dr. V. Ramdoss¹, Mrs. A. Amutha²

¹Department of Mathematics, PRIST University, Thanjavur
²Department of Mathematics, PRIST University, Thanjavur

Abstract: In this chapter we discuss some basic properties of minimum covering energy and derive an upper bound and a lower bound for $E_c(G)$. Compute the minimum covering energy of path and cycle.

Keywords: $E_c(G)$ – Minimum covering Energy, $A_c(G)$ – Minimum covering Matrix

$\sum a_{ii}^2 = |C|$, $\sum a_{ij}^2 = |E|$, $\sum(a_{ii} a_{jj}) = \left(\frac{|C|}{2}\right)$, $\sum(a_{ii} a_{jj} a_{kk}) = \left(\frac{|C|}{3}\right)$.

I. INTRODUCTION

The minimum covering energy of a graph introduced by Chandrashekar Adiga [1,5], is the motivation behind this project. In this dissertation this particular energy is studied. P_n and C_n [8, 10, 12] for different values of n are considered and their minimum covering energies have been calculated and tabulated. For some theorem have been checked.

II. DEFINITIONS

2.1 Graph

A graph $G = (V, E)$ consists of a set of objects $V = \{v_1, v_2, v_3, \ldots\}$ called vertices and another set $E = \{e_1, e_2, e_3, \ldots\}$ whose elements are called edges, such that each edge e_k are called the end vertices of e_k.

The most common representation of a graph is by means of a diagram, in which the vertices are represented as points and each edge as a line segment joining its end vertices.

2.2 Path graph

An open walk in which no vertex appears more than once is called a path.

2.3 Cycle graph

A circuit that does not contain any repetition of vertices except the starting vertex and the terminal vertex is called cycle.

2.4 Energy of a graph

The energy, $E(G)$, of a graph G is defined as the sum of the absolute values of its eigen values.

2.5 Minimum Covering set

A subset C of V is called a covering set of G if every edge of G is incident to at least one vertex of C. Any covering set with minimum cardinality is called a minimum covering set.

2.6 Minimum Covering Matrix

Let C be a minimum covering set of a graph G. The minimum covering matrix of G is the $n \times n$ matrix $A_c(G) = (a_{ij})$, where
\[a_{ij} = \begin{cases} 1, & \text{if } v_i v_j \in E \\ 1, & \text{if } i = j \text{ and } v_i \in C \\ 0, & \text{otherwise} \end{cases} \]

The characteristic polynomial of \(A_c(G) \) is denoted by \(f_n(G, \lambda) = \det(\lambda I - A_c(G)) \).

2.7 Minimum Covering Eigenvalues

The Minimum Covering Eigen values of the graph \(G \) are the eigenvalues of \(A_c(G) \). Since \(A_c(G) \) is real and symmetric, its eigenvalues are real numbers and we label them in non-increasing order \(\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_n \).

2.8 Minimum Covering Energy

The Minimum Covering energy of \(G \) is then defined as

\[E_c(G) = \sum_{i=1}^{n} |\lambda_i|. \]

III. Compute the minimum covering energy of two graphs

3.1 Path Graph

<table>
<thead>
<tr>
<th>Graph</th>
<th>Energy</th>
<th>Minimum covering set</th>
<th>Minimum covering Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_4)</td>
<td>4.4720</td>
<td>(C_1(P_4) = {v_1, v_3}) (C_2(P_4) = {v_2, v_3})</td>
<td>4.9770</td>
</tr>
<tr>
<td>(P_5)</td>
<td>5.4610</td>
<td>(C_1(P_5) = {v_2, v_4})</td>
<td>4.9770</td>
</tr>
<tr>
<td>(P_6)</td>
<td>6.9890</td>
<td>(C_1(P_6) = {v_2, v_4, v_5}) (C_2(P_6) = {v_1, v_3, v_5})</td>
<td>7.5728</td>
</tr>
<tr>
<td>(P_7)</td>
<td>8.0546</td>
<td>(C_1(P_7) = {v_2, v_4, v_6})</td>
<td>8.6568</td>
</tr>
<tr>
<td>(P_8)</td>
<td>9.5175</td>
<td>(C_1(P_8) = {v_2, v_3, v_5, v_7}) (C_1(P_8) = {v_2, v_4, v_6, v_8})</td>
<td>10.3576</td>
</tr>
<tr>
<td>(P_9)</td>
<td>10.6275</td>
<td>(C_1(P_9) = {v_2, v_4, v_6, v_8})</td>
<td>11.4654</td>
</tr>
<tr>
<td>(P_{10})</td>
<td>12.0532</td>
<td>(C_1(P_{10}) = {v_2, v_4, v_4, v_4}) (C_2(P_{10}) = {v_1, v_3, v_5, v_7, v_9})</td>
<td>13.3704</td>
</tr>
</tbody>
</table>
3.2 Cycle Graph

<table>
<thead>
<tr>
<th>Graph</th>
<th>Energy</th>
<th>Minimum covering set</th>
<th>Minimum covering Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_4</td>
<td>6.0000</td>
<td>$C_1(C_4) = {v_1, v_3}$</td>
<td>5.1232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2(C_4) = {v_2, v_4}$</td>
<td>5.1232</td>
</tr>
<tr>
<td>C_5</td>
<td>6.4720</td>
<td>$C_1(C_6) = {v_1, v_3, v_5}$</td>
<td>7.4286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2(C_6) = {v_1, v_2, v_4}$</td>
<td>7.4286</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_3(C_6) = {v_1, v_3, v_4}$</td>
<td>7.4286</td>
</tr>
<tr>
<td>C_6</td>
<td>8.0000</td>
<td>$C_1(C_6) = {v_1, v_3, v_5}$</td>
<td>8.5952</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2(C_6) = {v_2, v_4, v_6}$</td>
<td>8.5952</td>
</tr>
<tr>
<td>C_7</td>
<td>8.9878</td>
<td>$C_1(P_8) = {v_1, v_2, v_4, v_6}$</td>
<td>9.7961</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2(P_8) = {v_1, v_3, v_5, v_6}$</td>
<td>9.7961</td>
</tr>
<tr>
<td>C_8</td>
<td>9.5176</td>
<td>$C_1(P_8) = {v_1, v_3, v_5, v_7}$</td>
<td>11.1232</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2(P_8) = {v_2, v_4, v_6, v_8}$</td>
<td>11.1232</td>
</tr>
<tr>
<td>C_9</td>
<td>10.0276</td>
<td>$C_1(P_9) = {v_2, v_4, v_6, v_8}$</td>
<td>12.4586</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2(P_9) = {v_2, v_3, v_5, v_7}$</td>
<td>12.4586</td>
</tr>
<tr>
<td>C_{10}</td>
<td>11.5276</td>
<td>$C_1(P_{10}) = {v_2, v_4, v_4, v_4}$</td>
<td>13.5689</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$C_2(P_{10}) = {v_1, v_3, v_5, v_7, v_9}$</td>
<td>13.5689</td>
</tr>
</tbody>
</table>

IV. Some basic properties of minimum covering energy

4.1 Theorem

If $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the eigenvalues of $A_c(G)$, then $\sum_{i=1}^{n} \lambda_i^2 = 2|E| + |C|$.

Proof

The sum of squares of the eigenvalues of $A_c(G)$ is just the trace of $A_c(G)^2$. Therefore,

$$
\sum_{i=1}^{n} \lambda_i^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} a_{ji} = 2 \sum_{i < j} (a_{ij})^2 + \sum_{i=1}^{n} (a_{i,i})^2 = 2|E| + |C|.
$$
\[
\sum_{i=1}^{n} \lambda_i^2 = 2|E| + |C|.
\] (1)

4.2 Theorem

Let G be a graph with n vertices, m edges, and let C be a minimum covering set of G. Then

\[E_c(G) \leq \sqrt{n(2m + |C|)}. \]

Proof

Let \(\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \ldots \geq \lambda_n \) be the eigenvalues of \(A_c(G) \). Then by Cauchy-Schwarz inequality,

\[
(\sum_{i=1}^{n} a_i b_i)^2 \leq (\sum_{i=1}^{n} a_i^2)(\sum_{i=1}^{n} b_i^2)
\]

We choose \(a_i = 1 \) and \(b_i = |\lambda_i| \) we get [by 1]

\[
E_c(G)^2 = \left(\sum_{i=1}^{n} |\lambda_i| \right)^2 \leq n \left(\sum_{i=1}^{n} |\lambda_i|^2 \right) = n \sum_{i=1}^{n} \lambda_i^2 = n(2m + |C|).
\]

\[E_c(G)^2 = n(2m + |C|). \] (2)

4.3 Theorem

Parity Theorem

Let G be a graph with a minimum covering energy \(E_c(G) \) of G is a rational number, then

\[E_c(G) \equiv |C| \pmod{2} \]

Proof

Let \(\lambda_1, \lambda_2, \ldots, \lambda_r \) be positive, and the rest of the minimum covering eigenvalues non-positive. Thus

\[
E_c(G) = \sum_{i=1}^{n} |\lambda_i| = (\lambda_1 + \lambda_2 + \ldots + \lambda_r) - (\lambda_{r+1} + \ldots + \lambda_n)
\]

Implying

\[
E_c(G) = 2(\lambda_1 + \lambda_2 + \ldots + \lambda_r) - |C|.
\]

Since \(\lambda_1, \lambda_2, \ldots, \lambda_r \) are algebraic integers, so is their sum. Hence \((\lambda_1 + \lambda_2 + \ldots + \lambda_r) \) must be an integer if \(E_c(G) \) is rational.

REFERENCES

II. Bapat.R.B and Sukanta Pati, Energy of a graph is never an odd integer, Indian Statistical Institute, New Delhi, 110016.
IV. Bo Zhou, Energy of a graph, South China Normal University, Guangzhou 510631, P.R. China, 26 October 2003.
VI. Harary F., Graph Theory, Addison-Wesley, 1969.
VII. Indulal G. and Vijayakumar A., A note on energy of some graphs, Communications in mathematical and in computer chemistry, volume 59, 2008, 269-274.
IX. Ivan Gutman, On graphs whose energy exceeds the number of vertices, Linear Algebra and its Applications, 429, 2008, 2670-2677.
XI. Narsingh Deo, Graph Theory with Applications to Engineering and Computer Science, Prentice Hall 1971.
XII. Pirzada S, I. Gutman, Energy of a Graph is Never the square root of an odd integer, Applicable Analysis and Discrete Mathematics, 2 (2008), 118-121.

XIII. Richard A. Brualdi, Energy of a Graph, Madison, WI 53706, October 18, 2006.

XIV. Robin J. Wilson, Introduction to Graph Theory, Addison Wesley, Longman 1996.
