Some Topological Separation Axioms Using g^*b - Open Sets

Dr.A. Gurumoorthy
Department of mathematics, A.V.V.M. Sri Pushpam College, Poondi, Thanjavur.

Abstract - Replacing open sets by g^*b - open sets and ‘cl’ by ‘g^*b - cl’ in H_i - spaces, ($i = 0, 1, 2$) and U_i - Spaces ($i = 0, 1$) of Csaszar [8], we introduce $g^*b - H_i$ - spaces, ($i = 0, 1, 2$) and $g^*b - U_i$ - Spaces ($i = 0, 1$) in topological spaces and study its properties.

Keywords - $g^*b - H_i$ - Spaces ($i = 0, 1, 2$) and $g^*b - U_i$ - Spaces ($i = 0, 1$).

I. INTRODUCTION

Topology has a vital role in pure mathematics and has many subfields. The topology structured the foundation for geometry and algebra. There is no universal agreement among mathematicians as what a first course in topology should include. There are many topics that are appropriate to such a course and not all are equally relevant to the varied purposes.

Separation axioms are properties by which the topology on a space X separates points from points, points from closed sets and closed sets from each other. The various separation axioms give rise to a sequence of successively stronger requirements, which are put upon the topology of a space to separate varying types of subsets.

In 1963, Levine introduced the concept of semi - open sets. Since then, a considerable number of papers discussing separation axioms, essentially by replacing open sets by semi-open sets, have appeared in the literature. For instance, Maheshwari and Prasad introduced semi - T_0, semi - T_1, semi - T_2, s - normality and s - regularity as a generalization of T_0, T_1, T_2, regularity and normality axioms respectively, and investigated their properties. The notion of semi-open sets was used by Maheshwari and Prasad to introduce pairwise semi-T_0, pairwise semi - T_1, pairwise semi - T_2, pairwise s - regular and pairwise s-normal spaces. Moreover, s - normal (resp. semi normal) spaces were introduced and studied by Maheshwari and Prasad [12] (resp. Dorsett [9]).

Throughout this paper X and Y always represent nonempty topological spaces (X, σ) and (Y, σ). In this paper, we introduce $g^*b - H_i$ - spaces, ($i = 0, 1, 2$) and $g^*b - U_i$ - Spaces ($i = 0, 1$) in topological spaces and study its properties.

II. $g^*b - H_i$ - SPACES ($i = 0, 1, 2$) AND $g^*b - U_i$ - SPACES ($i = 0, 1$)

The concepts of g^*b - closed sets were introduced and studied by D. Vidhya and R. Parimelazhagan[22] in topological spaces. In this section, we introduce $g^*b - H_i$ - spaces, ($i = 0, 1, 2$) and $g^*b - U_i$ - Spaces ($i = 0, 1$) in topological spaces and study its properties.

Definition 2.1 A subset A of a topological space (X, τ) is called
1. g - closed [11] if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
2. g^*b - closed [22], if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is g - open in X.

Definition 2.2. A topological space (X, τ) is said to be:
1. $g^*b - T_0$ [1] if for each pair of distinct points x, y in X, there exists a g^*b - open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.
2. $g^*b - T_1$ [1] if for each pair of distinct points x, y in X, there exist two g^*b - open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.
3. \(g^*b - T_2 \) [1] if for each distinct points \(x, y \) in \(X \), there exist two disjoint \(g^*b \) - open sets \(U \) and \(V \) containing \(x \) and \(y \) respectively.

Definition 2.3: A space \(X \) is said to be \(g^*b - R_0 \) if for every pair of points \(x \) and \(y \) such that \(x \notin g^*b cl\{y\} \) implies that \(y \notin g^*b cl\{x\} \).

Definition 2.4: A space \(X \) is said to be \(g^*b - R_1 \) if for every pair of distinct points \(x, y \) of \(X \) with \(g^*b \) \(cl\{x\} \neq g^*b \) \(cl\{y\} \) there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in U, y \in V, U \cap V = \phi \). Hence, \(X \) is \(g^*b - H_0 \).

Definition 2.5: A space \(X \) is said to be \(g^*b - H_0 \) if for every pair of points \(x \) and \(y \) such that \(x \notin g^*b cl\{y\} \) there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in U, y \in V, U \cap V = \phi \).

Definition 2.6: A space \(X \) is said to be \(g^*b - H_1 \) if for every pair of points \(x \) and \(y \) such that \(g^*b \) \(cl\{x\} \cap g^*b \) \(cl\{y\} = \phi \), there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in U, y \in V, U \cap V = \phi \).

Definition 2.7: A space \(X \) is said to be \(g^*b - H_2 \) if for every \(g^*b \) - closed set \(A \) and a point \(x \) such that \(g^*b \) \(cl\{x\} \cap A = \phi \), there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in U, A \subseteq V, U \cap V = \phi \).

Definition 2.8: A space \(X \) is said to be \(g^*b - U_0 \) if for every pair of points \(x \) and \(y \) such that \(x \notin g^*b cl\{y\} \), there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in U, y \in V, g^*b \) \(cl\{U\} \cap g^*b \) \(cl\{V\} = \phi \).

Definition 2.9: A space \(X \) is said to be \(g^*b - U_1 \) if for every pair of points \(x \) and \(y \) such that \(g^*b \) \(cl\{x\} \cap g^*b \) \(cl\{y\} = \phi \), there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in V, y \in U, g^*b \) \(cl\{U\} \cap g^*b \) \(cl\{V\} = \phi \).

Theorem 2.10: Every \(g^*b \) - normal space is \(g^*b - H_2 \).

Proof: Let \(X \) be \(g^*b \) - normal space. Let \(x \in X \) and let \(A \) be a \(g^*b \) - closed set such that \(g^*b \) \(cl\{x\} \cap A = \phi \). By \(g^*b \) - normality of \(X \), there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(g^*b \) \(cl\{x\} \subseteq V, A \subseteq U, U \cap V = \phi \). Hence \(x \in V, A \subseteq U, U \cap V = \phi \). Hence, \(X \) is \(g^*b - H_2 \).

Theorem 2.11: Every \(g^*b - H_2 \) space is \(g^*b - H_1 \).

Proof: Let \(X \) be \(g^*b - H_2 \) space. Let \(x \) and \(y \) be two distinct points of \(X \) such that \(g^*b \) \(cl\{x\} \cap g^*b \) \(cl\{y\} = \phi \). Since \(X \) is \(g^*b - H_2 \), therefore there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in V, g^*b \) \(cl\{y\} \subseteq U, U \cap V = \phi \). Thus \(x \in V, y \in U, U \cap V = \phi \). Hence, \(X \) is \(g^*b - H_1 \).

Theorem 2.12: Every \(g^*b - H_0 \) space is \(g^*b - H_1 \).

Proof: Let \(X \) be \(g^*b - H_0 \) space. Let \(x \) and \(y \) be two distinct points of \(X \) such that \(g^*b \) \(cl\{x\} \cap g^*b \) \(cl\{y\} = \phi \). Hence \(x \notin g^*b - cl\{y\} \). Since \(X \) is \(g^*b - H_2 \), therefore there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in V, y \in U, U \cap V = \phi \). Hence, \(X \) is \(g^*b - H_1 \).

Theorem 2.13: Every \(g^*b - R_1 \) space is \(g^*b - H_0 \).

Proof: Let \(X \) be \(g^*b - R_1 \) space. Let \(x \notin g^*b - cl\{y\} \). Then \(g^*b - cl\{x\} \neq g^*b - cl\{y\} \). Thus there exists a \(g^*b \) - open set \(U \) and a \(g^*b \) - open set \(V \) such that \(x \in U, y \in V, U \cap V = \phi \). Hence, \(X \) is \(g^*b - H_0 \).
Theorem 2.14 : Every $g^*b - R_1$ space is $g^*b - H_1$.
Proof : Follows in view of Theorem 2.12 and 2.13.

Definition 2.15 : A space X is said to be strongly g^*b-regular if for each g^*b-closed subset A of X and $x \not\in A$, there exist disjoint g^*b-open sets U and V such that $x \in U$ and $A \subseteq V$.

Theorem 2.16 : Every $g^*b - H_0$ space is $g^*b - R_0$.
Proof : Let X be a $g^*b - H_0$ space. Let $x \in G \subseteq g^*b - O(\tau)$ and let $y \in X - G$. Then $x \not\in g^*b - cl\{y\}$.
Since X is $g^*b - H_0$, there exists a g^*b-open set U and a g^*b-open set V such that $x \in U$, $y \in V$, $U \cap V = \emptyset$. Hence X is $g^*b - H_0$.

Theorem 2.17 : Every strongly g^*b-regular space is $g^*b - H_2$.
Proof : Let X be a strongly g^*b-regular space. Let $x \in X$ and let A be a g^*b-closed subset of X such that $g^*b - cl\{x\} \cap A = \emptyset$. Then $x \not\in A$. By strongly g^*b-regularity of X, there exists a g^*b-open set U and a g^*b-open set V such that $x \in U$, $A \subseteq V$, $U \cap V = \emptyset$. Hence, X is $g^*b - H_2$.

Theorem 2.18 : A space is $g^*b - T_2$ if and only if it is $g^*b - T_0$ and $g^*b - H_0$.
Proof : Let X be a $g^*b - T_2$ space. Clearly, X is $g^*b - T_0$. Let $x, y \in X$ such that $x \not\in g^*b - cl\{y\}$. Then $x \neq y$, since X is $g^*b - T_2$, there exists a g^*b-open set U and a g^*b-open set V, such that $x \in U$, $y \in V$, $U \cap V = \emptyset$. Hence X is $g^*b - H_0$.
Conversely, let X be a $g^*b - T_0$ and $g^*b - H_0$. Let x, y be two distinct points of X. Since X is $g^*b - T_0$, there exists a g^*b-open set U or a g^*b-open set V such that $x \in U$, $y \not\in V$ or $x \not\in U$, $y \in V$. Thus $x \not\in g^*b - cl\{y\}$ or $y \not\in g^*b - cl\{x\}$. Let $x \not\in g^*b - cl\{y\}$. Since the space is $g^*b - H_0$, there exists a g^*b-open set P and a g^*b-open set Q such that $x \in P$, $y \in Q$, $P \cap Q = \emptyset$. The result follows similarly in case $y \not\in g^*b - cl\{x\}$. Hence X is $g^*b - T_2$.

Theorem 2.19 : A space is $g^*b - T_2$ if and only if it is $g^*b - T_1$ and $g^*b - H_1$.
Proof : Let X be a $g^*b - T_2$ space. Clearly, X is $g^*b - T_1$. Let $x, y \in X$ such that $g^*b - cl\{x\} \cap g^*b - cl\{y\} = \emptyset$. Then x, y are distinct points of X so that there exists a g^*b-open set U and a g^*b-open set V, such that $x \in U$, $y \in V$, $U \cap V = \emptyset$. Hence, X is $g^*b - H_1$.
Conversely, let X be a $g^*b - T_1$ and $g^*b - H_1$. Let x, y be two distinct points of X. Since X is $g^*b - T_1$, therefore $\{x\}$ and $\{y\}$ are g^*b-closed sets. Hence $g^*b - cl\{x\} \cap g^*b - cl\{y\} = \emptyset$. Since X is $g^*b - H_1$, there exists a g^*b-open set U and a g^*b-open set V such that $x \in U$, $y \in V$, $U \cap V = \emptyset$. Hence X is $g^*b - T_2$.

Theorem 2.20 : Every strongly g^*b-regular space is $g^*b - U_0$.
Proof : Let X be a strongly g^*b-regular space. Let $x, y \in X$ such that $x \not\in g^*b - cl\{y\}$. Since the space is strongly g^*b-regular, there exists a g^*b-open set U and a g^*b-open set V such that $x \in U$, $g^*b - cl\{y\} \subseteq V$, $g^*b - cl\{U\} \cap g^*b - cl\{V\} = \emptyset$. Hence $x \in U$, $y \in V$, $g^*b - cl\{U\} \cap g^*b - cl\{V\} = \emptyset$ and thus the space is $g^*b - U_0$.

Theorem 2.21 : Every $g^*b - U_0$ space is $g^*b - H_0$.
Proof : Let X be a $g^*b - U_0$ space. Let $x, y \in X$ such that $x \not\in g^*b - cl\{y\}$. Since X is $g^*b - U_0$, there exists a g^*b-open set U and a g^*b-open set V such that $x \in U$, $y \in V$, $g^*b - cl\{U\} \cap g^*b - cl\{V\} = \emptyset$. Hence $x \in U$, $y \in V$, $U \cap V = \emptyset$ and thus X is $g^*b - H_0$.
Theorem 2.22: Every \(g^* b - U_1 \) space is \(g^* b - H_1 \).

Proof: Let \(X \) is \(g^* b - U_1 \) space. Let \(x, y \in X \) such that \(g^* b - cl \{ x \} \cap g^* b - cl \{ y \} = \emptyset \). Since \(X \) is \(g^* b - U_1 \), there exists a \(g^* b - \) open set \(U \) and a \(g^* b - \) open set \(V \) such that \(x \in U, y \in V, g^* b - cl U \cap g^* b - cl V = \emptyset \). Hence \(x \in V, y \in U, U \cap V = \emptyset \) and thus \(X \) is \(g^* b - H_1 \).

Theorem 2.23: Every \(g^* b \) - normal space is \(g^* b - U_1 \).

Proof: Let \(X \) is \(g^* b \) - normal space. Let \(x, y \in X \) such that \(g^* b - cl \{ x \} \cap g^* b - cl \{ y \} = \emptyset \). Since \(X \) is \(g^* b \) - normal, there exists a \(g^* b - \) open set \(U \) and a \(g^* b - \) open set \(V \) such that \(g^* b - cl \{ x \} \subseteq V, g^* b - cl \{ y \} \subseteq U, g^* b - cl \{ U \} \cap g^* b - cl \{ V \} = \emptyset \). Hence \(x \in V, y \in U, g^* b - cl \{ U \} \cap g^* b - cl \{ V \} = \emptyset \). Hence, \(X \) is \(g^* b - U_1 \).

REFERENCES

19. P.Padma, S.Udayakumar , “ On \(Q^* s \) - regular spaces and \(Q^* s \) - normal spaces”, (Accepted)