International Journal of Recent Trends in Engineering & Research

online ISSN

A SURVEY REPORT ON OPTIMIZED MULTIOBJECTIVE METAHEURISTIC METHODS FOR DATA CLUSTERING USING EVOLUTIONARY APPROACHES

Publication Date : 06/11/2017

DOI : 10.23883/IJRTER.2017.3478.X4EID


Author(s) :

K. DILEEP REDDY , DR. V.B.NARSIMHA.


Volume/Issue :
Volume 3
,
Issue 10
(11 - 2017)



Abstract :

The present survey provides the state-of-the-art of research, copiously devoted to Evolutionary Approach (EAs) for clustering exemplified with a diversity of evolutionary computations. The Survey provides a nomenclature that highlights some aspects that are very important in the context of evolutionary data clustering. The paper missions the clustering trade-offs branched out with wide-ranging Multi Objective Evolutionary Approaches (MOEAs) methods. Finally, this study addresses the potential challenges of MOEA design and data clustering, along with conclusions and recommendations for novice and researchers by positioning most promising paths of future research. MOEAs have substantial success across a variety of MOP applications, from pedagogical multifunction optimization to real-world engineering design. The survey paper noticeably organizes the developments witnessed in the past three decades for EAs based metaheuristics to solve multiobjective optimization problems (MOP) and to derive significant progression in ruling high quality elucidations in a single run. Data clustering is an exigent task, whose intricacy is caused by a lack of unique and precise definition of a cluster. The discrete optimization problem uses the cluster space to derive a solution for Multiobjective data clustering. Discovery of a majority or all of the clusters (of illogical shapes) present in the data is a long-standing goal of unsupervised predictive learning problems or exploratory pattern analysis.


No. of Downloads :

2


Indexing

License

Traffic Stats

Total Visits : 5,104