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  Abstract—Hyperspectral imaging belongs to a class of 

technique called spectral imaging or spectral analysis. The 

objective of  hyperspectral imaging is to find the spectrum for 

each pixel Present in the image of a scene. Hyperspectral 

unmixing is an emerging topic in  hyperspectral image analysis 

to distinguish the materials present in an image and thereby 

finding the proportion of each material in an image. The 

distinct materials are called as end members and proportion 

values are called as abundance maps. Hyperspectral unmixing 

is an important technique for estimating fraction of different 

land cover types from remote sensing imagery. It is the process 

of estimating constituent endmembers and their fractional 

abundances present at each pixel in a hyperspectral image. A 

hyperspectral image is often corrupted by several kinds of 

noise. Joint Sparsity and Total variation (JSTV) addresses the 

hyperspectral unmixing problem in a general scenario that 

considers the presence of mixed noise. The Joint sparsity has 

been formulated to exploit the abundance maps. A total-

variation based regularization has also been utilized for 

modeling smoothness of abundance maps. The split-Bregman  

technique has been utilized to derive an algorithm for solving 

resulting optimization problem. Results indicate that the 

proposed joint sparsity and total variation methods are able to 

successfully perform unmixing on synthetic data and real 

hyperspectral imagery while  preserving  endmember  spatial 

information with smooth abundance maps. 

   

  Index Terms-Hyperspectral Unmixing, Joint-Sparsity, Split-

Bregman ,Total Variation, Mixed-Noise 

                             I.INTRODUCTION 

          Hyperspectral imaging provides enhanced 

classification, detection, and identification performance with 

respect to standard imaging systems, by utilizing the high 

amount of spectral information for each pixel. It is a problem 

of identifying endmembers and their fractional abundances 

present at every pixel in a hyperspectral image.The term 

endmember refers to various materials that may be directly 

or indirectly present in a hyperspectral image. The term 

direct presence refers to the existence of pure pixels and 

indirect presence refers to mixed pixels. 

              A pixel in a satellite image corresponds to an 

extensive spatial area on earth. This spatial region 

constituting that pixel may be covered by a single object or 

multiple objects. If the area covered by a pixel constitutes a 

single object then such a pixel is called pure pixel otherwise 

it is called mixed pixel. The term fractional abundance 

indicates the percentage of a particular endmember present  

 

at a pixel. Thus, abundance map shows the distribution of a 

particular endmember over a region. The pure pixels have 

the fractional abundance of one whereas mixed pixels have 

fractional abundance between zero and one. 

        Hyperspectral unmixing has applications in various 

domains such as geology, agriculture [1], environmental 

studies, biology [2], etc. The abundance maps are often used 

as feature vectors [3] in several image processing and pattern 

recognition related applications of hyperspectral images. 

Hyperspectral unmixing is also used in denoising [4], data 

fusion [5], and super-resolution [6] related applications. 

          Often hyperspectral images are corrupted by some 

kinds of noise such as Gaussian noise, impulse noise, shot 

noise, horizontal or vertical line strips, etc. Gaussian noise 

mostly occurs during image acquisition process due to poor 

lighting, dark current or sensor noise. Horizontal line strips 

often occur in images captured by whisk-broom kind of 

sensors that have rotating mirrors perpendicular to the flight 

direction. Vertical line strips mostly occur in images 

captured by push-broom kind of sensors which capture scene 

along the flight direction. Shot noise occurs due to some 

defective pixels. It is desirable to do unmixing of 

hyperspectral images even when they are corrupted by one 

or several of these kinds of noise. This problem of unmixing 

in the presence of mixed noise can be approached by firstly 

applying a denoising algorithm followed by the unmixing 

algorithm.This work directly recovers the abundance map in 

the presence of mixed noise. There are studies such as [4], 

[12] that also perform unmixing in the presence of noise. 

This work is different from these existing methods in terms 

of both the noise model and the solution approach 

         This model allows us to formulate the linear 

hyperspectral unmixing problem that explicitly account for 

both Gaussian and sparse noise. The term sparse noise 

corresponds to the noise that affects few pixels in the image. 

It includes line strips, shot noise as well as impulse noise. 

The total number of endmembers available from different 

spectral libraries (e.g. the USGS library) are huge, but only a 

few of these endmembers are present in a given 

hyperspectral image. 

            This observation can be modeled as joint-sparse[15] 

regularization on abundance maps. Natural images often 

exhibit high spatial correlation implying that pixels having 

the same spectral signature may be present in the 

neighborhood. This observation can be modeled as total-

variation [16] regularization on abundance maps. Thus, this 

work proposes a hyperspectral unmixing algorithm that 
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utilize generic noise model and explores both joint sparsity 

and spatial smoothness of abundance maps. The resulting 

optimization problem is solved using the split-Bregman 

based [17] technique. 

      Section II describes detailed problem formulation 

followed by section III describes the technique to solve 

proposed formulation. Section IV describes experimental 

results and section V concludes the paper with some future 

directions 

 

   II.PROBLEM DEESCRIPTION AND FORMULATION  

 

            This section describes how linear unmixing problem 

can be mathematically formulated as sparse recovery 

problem followed by  proposed problem formulation. 

 

A.Notations 

 

       Let In represents identity matrix of size n×n.The 

operation x = vec(X) represents vectorization operation on 

matrix X with columns appended whereas X = mat(x) 

represents its inverse operation. A hyperspectral data cube of 

size m×n×b can be represented as a matrix of size b×p 

where b is the total number of bands and p = m×n is the 

total number of pixels in the image. M∈ Rbxc
 represents 

mixing matrix also called endmember matrix in which each 

column represents spectral signature of an endmember. 

     

     Let ∇=  �∇�
∇� � be total variation operator with∇h and ∇v 

representing horizontal and vertical total vatiation operators 

respectively with (∇h X) i ,j=X i, j| ┴  Xi, j and (∇v X) i ,j=X i, j| ┴  

Xi, j .The ℓ2,1 norm of a matrix A∈ R 
M X  N 

 is defined as  

 

                           ||A||2,1  =   ∑ |�|
���   =∑ �∑ |�|����
��� i,j 

 

B. Problem Description 

       

         The linear unmixing problem for a pixel in the 

presence of Gaussian noise is represented as 

 

                         Y= Ma + n,   ||a||1=1,  aI≥0∀i 

 

where y ∈ R
bx1

 is a pixel vector in b spectral bands, M is a 

mixing matrix with e number of endmembers as column 

vectors, a ∈ R
ex1

 is called abundance vector that represents 

the fraction of each endmember used in the formation of that 

pixel, and n represents Gaussian noise which accounts for 

various external environmental factors. The constraint ||a|| = 

1 represents abundance sum-to-one constraint to ensures that 

total contribution of each endmember in formation of a pixel 

is one. As it has been noticed in [7], [21], [22], all the 

endmembers present in a real hyperspectral image may not 

be available in the spectral library. 

         The observation that a pixel is mixture of very few 

endmembers as opposed to hundreds of available 

endmembers allow us to treat abundance vector a as sparse 

vector thus unmixing can be recast as compressed sensing 

[23], [24] problem : 

 

                 min� ||y- Ma||2 
2  

subject to ||a||0 ≤ k 

 

where k is the sparsity of a i.e.maximum number of nonzero 

elements of a.  

         It has been shown that under certain conditions 

solution of the NPhard problem (2) can be approximated by 

solving its convex surrogate ℓ1-norm minimization problem 

 

                         min� ||y- Ma||2 
2  

+ λ||a||1 

 

        The unmixing model in (1) can be extended for all the 

pixels as 

                             Y = MA + N,   A ≥ 0  

   

    where Y ∈ Rbxp is a matrix with p pixels as column vectors, 

A ∈ Rexp is sparse abundance matrix, N is Gaussian noise. 

This unmixing model can be though of as specialization of 

image denoising model : 

 

                                   Y = X + N 

 

     where X∈Rbxp and X = MA is clean hyperspectral image 

which imply that unmixing can lead to denoising provided 

that mixing matrix is known. 

 

C.Proposed Formulation 

 

          A real hyperspectral image may contain a mixture of 

Gaussian and sparse noise therefore, the mixed noise model 

for unmixing is considered for both types of noise. The usual 

unmixing model can be extended as 

 

                           Y = MA + S + G, A ≥ 0                                                         

here S and G represents sparse and Gaussian noise 

respectively. 

The noise model assumes both Gaussian and sparse 

noise to be additive noise. Sparse noise accounts for 

horizontal or vertical line strips, shot noise and any impulse 

noise present in a hyperspectral image. All these kinds of 

noise are termed as sparse noise since they corrupt few 

pixels in a hyperspectral image.   

 

                  minA,S ||Y-MA-S||
2

F  + λ1||A||2,1 + λ2||S||1  

                                                             

The first term is data fidelity term that is equivalent 

to minimizing the variance of Gaussian noise G = Y – MA − 

S. First regularization term is an ℓ2,1-norm minimization 

term on abundance matrix A which is also called joint-sparse 

regularization term. This term is based on the observation 

that in most hyperspectral images, a fewer endmembers are 

present compared to the available endmembers. The 

observation is mathematically modelled as joint-sparse 

regularization on matrix A with few non-zero rows, but each 

non-zero row is allowed to be dense.  
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The second regularization term corresponds to 

minimizing ℓ1-norm of sparse noise matrix S.Here ℓ1-norm 

is minimized due to modelling assumption that sparse noise 

affects few pixels in the image. As an alternative unmixing 

model the abundance maps can be considered as piece-wise 

smooth. The piece-wise smoothness can be modelled as total 

variation regularization. 

 

                   minA,S ||Y −MA − S||
2

F + λ1||∇A
T
 ||1 + λ2||S||1  

                                                              

Here ∇ is two-dimensional total variation operator 

that applies total variation along both horizontal and vertical 

direction on a 2D image. The operator ∇ is applied on A
T
 

because each abundance map is along rows of A.  

 

      minA,S ||Y −MA − S||
2

F + λ1||∇A
T
 ||1 + λ2||A||2,1+ λ3||S||1  

  

                Here  λ1, λ2 and λ3 are regularization parameters 

corresponding to total-variation term, joint-sparsity term, 

and sparse noise term respectively. These three models 

estimates sparse noise S as a byproduct of the proposed 

formulations.  

           Let X = MA be the clean image then we can get 

denoised image X = MA where A is the estimated 

abundance maps by solving. Along with generic noise 

model, both joint-sparsity as well as piecewise-smoothness 

of abundance maps were exploited. In the next section this 

problem was solved using the split-bregman technique. 

 

                          III.PROPOSED METHOD 

 

The proposed algorithm is split bregmen approach 

which utilizes both joint sparsity and total variation methods.  

The variable A is not separable in (8) therefore we utilize 

auxiliary variables P and Q to make the problem separable. 

Set P = ∇A
T
 and Q = A, then we get following constrained 

problem: 

 

MinimizeA,S,P,Q ||Y-MA-S||
2

F + λ1||P ||1 + λ2||Q||2,1+ λ3||S||1  

  

Subject  to     P = ∇A
T
  

                      Q = A, 

       This problem can be re-written into unconstrained form 

by using two Bregman variables B1 and B2 to get 

 

MinimizeA,S,P,Q ||Y-MA-S||
2

F + λ1||P ||1 + λ2||Q||2,1+ λ3||S||1   

                                  

                                     +�1||P-∇A
T
-B1||

2
F+�2||Q-A-B2||

2
F 

  

 where B1 and B2 are updated as: 

 

               B1 = B1 + ∇A
T
 − P 

 B2 = B2 + A − Q 

 

         Above problem is separable in each variable therefore 

can be written into following subproblems as 

 

           P1 : minP  �1||P-∇A
T
-B1||

2
F + λ1||P ||1 

            

           P2 : minQ �2||Q-A-B2||
2

F + λ2||Q||2,1 

  

                 P3 : minS  ||Y-MA-S||
2

F + λ3||S||1   

           P4: minA   ||Y-MA-S||
2

F+�1||P-∇A
T
-B1||

2
F+�2||Q-A-   

                               B2||
2

F 

 

           The Bregman Iterative Algorithm has been applied to 

many problems including image denoising and Basis pursuit 

because it has some convergence properties. These 

properties include monotonic decrease in the residual term, 

convergence to the original image or signal to recover the 

residual term with exact data, and convergence in terms of 

Bregman distance to the original image or signal with noisy 

data. Split bregman is one of the fastest solvers for total 

variation denoising, image reconstruction from fourier 

coefficients, convex image segmentation and many other 

problems. 

            Total variation denoising, also known as total 

variation regularization, is a process most often used in 

digital image processing, that has applications in noise 

removal. It is based on the principle that signals with 

excessive and possibly spurious detail have high total 

variation, that is the integral of the absolute gradient of the 

signal is high. According to this principle, reducing the total 

variation of the signal subject to it being a close match to the 

original signal, removes unwanted detail whilst preserving 

important details such as edges. 

This noise removal technique has advantages over 

simple techniques such as linear smoothing or median 

filtering which reduce noise but at the same time smooth 

away edges to a greater or lesser degree. By contrast, total 

variation denoising is remarkably effective at simultaneously 

preserving edges whilst smoothing away noise in flat 

regions, even at low signal-to-noise ratios.
  

Total variation can be seen as a non-negative real 

valued functional defined on the space of real-

valued functions  or on the space of integrable functions. As 

a functional, total variation finds applications in several 

branches of mathematics and engineering, like optimal 

control, numerical analysis, and calculus of variations, 

where the solution to a certain problem has to minimize its 

value. 

 Sparse approximation ideas and algorithms have 

been extensively used in signal processing, image 

processing, machine learning, medical imaging, array 

processing, data mining, and more. In most of these 

applications, the unknown signal of interest is modeled as a 

sparse combination of a few atoms from a given dictionary, 

and this is used as the regularization of the problem. In 

addition to being universally incoherent, random 

measurements are also future proof, if a better sparsity-

inducing basis is found, then the same random 

measurements can be used to reconstruct an even more 

accurate view of the environment. The joint sparsity method 

exploits the end members present in the abundance maps 

present in the different locations of an image and also 

provides smoothness to the image. 
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Thus they allow a progressively better 

reconstruction of the data as more measurements are 

obtained, one or more measurements can also be

corrupting the entire reconstruction .S

models capture the essence of real physical scenarios, 

illustrate the basic analysis and algorithmic techniques

indicate the gains to be realized from joint recovery. 

________________________________________________

Algorithm 1 Proposed JSTV Algorithm 

 1: Input: Y,  λ1,  λ2,   �1,  �2,  innerIter, outerIter

 2: output: A (Abundance maps) 

 3: for  j =1 to outerIter do 

 4:         for k=1 to innerIter do 

 5:          P
 K+1 

= SoftTh (∇(A
k
)

T 
+ B

k
1 ,

 ��
��)

 6:          Q
k+1 

= Shrink (A
k 
+ B

k
2 , 

 ��
��) 

 7:          S
k+1 

=SoftTh (MA 
K 

- Y  ,  λ3) 

 8:          A
k+1 

= mat (a)  

 9:          B1
k+1

 = B1
k
 + Dh X

k+1 
D –P

k+1
 

10:         B2
k+1

 = B2
k 
 + Dv X

k+1 
D –P

k+1
 

11:      end for 

12:      Y =Y – MA
k 
 - S

k
 

13: end for 

14:return A = A
J | 1 

________________________________________________
 

                IV EXPERIMENTS AND RESULTS

  

  This section describes the details of various experiments 

executed to validate the proposed meth

USGS spectral library was utilized in all the experiments. 

The library contains spectral signatures under six categories 

namely artificial, coatings, minerals, liquids, soil, and 

vegetation. Each abundance map is composed of two or 

three endmembers as represented by the number of 

rectangular boxes inside a map. The synthetic data 

experiments were conducted to quantify the performance of 

proposed unmixing algorithm. The synthetic dataset was 

generated using HYperspectral data viewer for Deve

of Research Applications (HYDRA) toolbox. Dark blue 

background color represents zero pixel value. Both the 

datasets satisfy abundance sum to one constraint as well as 

abundance non-negativity constraint. 
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Thus they allow a progressively better 

reconstruction of the data as more measurements are 

one or more measurements can also be lost without 

ting the entire reconstruction .Simple joint sparsity 

capture the essence of real physical scenarios, 

ysis and algorithmic techniques and 

indicate the gains to be realized from joint recovery.  

________________________________________________ 

 

innerIter, outerIter 

) 

________________________________________________ 

IV EXPERIMENTS AND RESULTS 

This section describes the details of various experiments 

executed to validate the proposed method. The existing 

USGS spectral library was utilized in all the experiments. 

The library contains spectral signatures under six categories 

namely artificial, coatings, minerals, liquids, soil, and 

vegetation. Each abundance map is composed of two or 

ndmembers as represented by the number of 

rectangular boxes inside a map. The synthetic data 

experiments were conducted to quantify the performance of 

proposed unmixing algorithm. The synthetic dataset was 

generated using HYperspectral data viewer for Development 

of Research Applications (HYDRA) toolbox. Dark blue 

background color represents zero pixel value. Both the 

datasets satisfy abundance sum to one constraint as well as 

 

             Figure1: Abundance maps of 

     The input image which is taken for analysis is synthetic 

hyperspectral image. The synthetic dataset has five 

abundance map of 50 ×50 pixels with constant fraction over 

a region. Each abundance map is composed of two or three 

endmembers as represented by the number of rectangular 

boxes inside a map. Abundance map shows the distribution 

of a particular endmember over a region. The pure pixels 

have the fractional abundance of one whereas mixed pixels 

have fractional abundance between zero

number of endmembers available from different spectral 

libraries  are huge, but only a few of these endmembers are 

present in a given hyperspectral image. At every pixel, a 

subset of the endmembers are present.Five endmembers 

were randomly selected to generate first Synthetic image of 

dimension 50×50×224. 

            The original hyperspectral image is mixed with noise 

such as Gaussian and Sparse noise. Gaussian noise mostly 

occurs during image acquisition process due to poor lighting, 

dark current or sensor noise. The term sparse noise 

corresponds to the noise that affects few pixels in the image. 

It includes line strips, shot noise as well as impulse noise. 

The experiments were done on the synthetic image with 

mixed noise consisting of Gaussian noise and vertical line 

strijps. Horizontal line strips often occur in images captured 

by whisk-broom kind of sensors that have rotating mirrors 

perpendicular to the flight direction. These experiments were 

done to check the robustness of proposed

in the presence of different kinds of noise. The Gau

noise of Signal to Noise Ratio (SNR) of 30 dB was added, 

but sparse noise is not known a

         The output image is the reconstruction of the original 

image. Synthetic hyperspectral image clearly shows the 

advantage of utilizing the concept of sparse noise in the 

unmixing framework. Since this image has a lot of smooth 

regions therefore Gaussian noise can be easily spotted in 

denoised images however compared to other

proposed JSTV algorithm has significantly reduced both 

kinds of noise. The Joint Sparsity and Total Variation 

(JSTV) method provides the reconstruction of the abundance 

map by providing exact endmembers in the appropriate areas 
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Abundance maps of different images 

The input image which is taken for analysis is synthetic 

hyperspectral image. The synthetic dataset has five 

50 pixels with constant fraction over 

a region. Each abundance map is composed of two or three 

s as represented by the number of rectangular 

boxes inside a map. Abundance map shows the distribution 

of a particular endmember over a region. The pure pixels 

have the fractional abundance of one whereas mixed pixels 

have fractional abundance between zero and one. The total 

number of endmembers available from different spectral 

libraries  are huge, but only a few of these endmembers are 

present in a given hyperspectral image. At every pixel, a 

subset of the endmembers are present.Five endmembers 

mly selected to generate first Synthetic image of 

The original hyperspectral image is mixed with noise 

such as Gaussian and Sparse noise. Gaussian noise mostly 

occurs during image acquisition process due to poor lighting, 

ark current or sensor noise. The term sparse noise 

corresponds to the noise that affects few pixels in the image. 

It includes line strips, shot noise as well as impulse noise. 

The experiments were done on the synthetic image with 

Gaussian noise and vertical line 

ps. Horizontal line strips often occur in images captured 

broom kind of sensors that have rotating mirrors 

perpendicular to the flight direction. These experiments were 

done to check the robustness of proposed unmixing method 

ifferent kinds of noise. The Gaussian 

noise of Signal to Noise Ratio (SNR) of 30 dB was added, 

but sparse noise is not known a priori value.  

The output image is the reconstruction of the original 

tic hyperspectral image clearly shows the 

advantage of utilizing the concept of sparse noise in the 

unmixing framework. Since this image has a lot of smooth 

regions therefore Gaussian noise can be easily spotted in 

denoised images however compared to other algorithms the 

proposed JSTV algorithm has significantly reduced both 

kinds of noise. The Joint Sparsity and Total Variation 

(JSTV) method provides the reconstruction of the abundance 

map by providing exact endmembers in the appropriate areas 
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as well as smoothens the image by removing the unwanted 

information and noise 

 

               Figure2: Abundance maps estimated by JSTV

A. Evaluation Metric 

 

         PSNR between original image X

image Y was calculated as: 

 

                           PSNR = 10 log10 ( 
� !"#


$%
 

            The Peak Signal to Noise Ratio (PSNR) value for a 

hyperspectral image was calculated as the average of the 

sum of PSNR value for each band. PSNR

term for the ratio between the maximum possible power of 

a signal and the power of corrupting noise

fidelity of its representation. Because many signals have a 

very wide dynamic range,  

________________________________________________

       

     Figure 3: PSNR and  Time values for unmix

                  

               PSNR is usually expressed in terms of 

the logarithmic decibel scale. PSNR is most commonly used 

to measure the quality of reconstruction .The signal in this 

case is the original data, and the noise is the error introduced 

by compression. PSNR is an approximation

perception of reconstruction quality. 

              The exact reconstruction will lead to the maximum 

value of PSNR as infinite. Higher the PSNR value better is 

the reconstruction quality 

 

                                 IV CONCLUSION 
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moothens the image by removing the unwanted 

 
Abundance maps estimated by JSTV 

X and reconstructed 

"#&'

$% ) 

The Peak Signal to Noise Ratio (PSNR) value for a 

hyperspectral image was calculated as the average of the 

PSNR is an engineering 

tween the maximum possible power of 

noise that affects the 

fidelity of its representation. Because many signals have a 

________________________________________________ 

 

values for unmixed image           

PSNR is usually expressed in terms of 

PSNR is most commonly used 

to measure the quality of reconstruction .The signal in this 

case is the original data, and the noise is the error introduced 

approximation to human 

The exact reconstruction will lead to the maximum 

value of PSNR as infinite. Higher the PSNR value better is 

 

          Spectral unmixing and denoising algorithms for 

hyperspectral remote sensing have always been considered 

independently. In this method, a new approach for 

hyperspectral unmixing has been developed. This approach 

exploits joint sparsity as well as the piece

of abundance maps in the generi

explicitly account for sparse and Gaussian noise. 

Simultaneous utilization of both total

regularization and joint-sparse regularization is not 

redundant as both achieve different goals. Total variation 

regularization has explored smoothness of abundance maps 

whereas joint-sparsity exploit the endmember present at 

various locations in the same area. The results shows that by 

imposing total variation, the unmixing results improve 

significantly with latent clean image, especially 

highly contaminated with noise. 

Experimental results show that the proposed 

method provides enhanced denoising performance with 

respect to regular hyperspectral unmixing, while also 

retaining the anomalous endmembers, which may be of 

interest for many applications.

utilized existing USGS spectral library for spectral 

signatures. The spectral signatures in the existing library can 

differ from the spectral signatures present in the image. This 

work can also be extended to 

signatures directly from the hyperspectral image. In future in 

order to exploit the endmembers present in the abundance 

map and also to improve the smoothness of the hyperspectral 

image another unmixing method can be proposed.
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Spectral unmixing and denoising algorithms for 

hyperspectral remote sensing have always been considered 

independently. In this method, a new approach for 

hyperspectral unmixing has been developed. This approach 

exploits joint sparsity as well as the piece-wise smoothness 

of abundance maps in the generic noise model which 

explicitly account for sparse and Gaussian noise. 

Simultaneous utilization of both total-variation 

sparse regularization is not 

redundant as both achieve different goals. Total variation 

red smoothness of abundance maps 

sparsity exploit the endmember present at 

various locations in the same area. The results shows that by 

imposing total variation, the unmixing results improve 

significantly with latent clean image, especially in scenarios 

highly contaminated with noise.  

Experimental results show that the proposed 

method provides enhanced denoising performance with 

respect to regular hyperspectral unmixing, while also 

retaining the anomalous endmembers, which may be of 

for many applications. The proposed framework 

utilized existing USGS spectral library for spectral 

signatures. The spectral signatures in the existing library can 

differ from the spectral signatures present in the image. This 

work can also be extended to derive the endmember 

signatures directly from the hyperspectral image. In future in 

order to exploit the endmembers present in the abundance 

map and also to improve the smoothness of the hyperspectral 

image another unmixing method can be proposed. 
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