A Novel Approach to Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Using UPQC

N. Uma Maheshwar, Assistant Professor, EEE, Nalla Narasimha Reddy Group of Institutions.
T. Sreekanth, Assistant Professor, EEE, Nalla Narasimha Reddy Group of Institutions.

Abstract—This approach introduces a new concept of optimal utilization of a unified power quality conditioner. The series inverter of UPQC is controlled to perform simultaneous 1) voltage sag/swell compensation and 2) load reactive power sharing with the shunt inverter. The active power control approach is used to compensate voltage sag/swell and is integrated with power angle control (PAC) of UPQC to coordinate the load reactive power between the two inverters. Since the series inverter simultaneously delivers active and reactive powers, this concept is named as UPQC-S. A detailed mathematical analysis, to extend the PAC approach for UPQC-S, is presented in this paper. MATLAB/SIMULINK-based simulation results are discussed to support the developed concept.

Index Terms—Active power filter (APF), power angle control (PAC), power quality, reactive power compensation, unified power quality conditioner (UPQC), voltage sag and swell compensation.

I. INTRODUCTION

The modern power distribution system is becoming highly vulnerable to the different power quality problems [1], [2]. The extensive use of nonlinear loads is further contributing to increased current and voltage harmonics issues. Furthermore, the penetration level of small/large-scale renewable energy systems based on wind energy, solar energy, fuel cell, etc., installed at distribution as well as transmission levels is increasing significantly. This integration of renewable energy sources in a power system is further imposing new challenges to the electrical power industry to accommodate these newly emerging distributed generation systems [3]. To maintain the controlled power quality regulations, some kind of compensation at all the power levels is becoming a common practice [5]–[9]. At the distribution level, UPQC is a most attractive solution to compensate several major power quality problems [7]–[9], [14]–[16]. The general block diagram representation of a UPQC-based system is shown in Fig. 1. It basically consists of two voltage source inverters connected back to back using a common dc bus capacitor. This paper deals with a novel concept of optimal utilization of a UPQC. The voltage sag/swell on the system is one of the most important power quality problems [1], [2]. The voltage sag/swell can be effectively compensated using a dynamic voltage restorer, series active filter, UPQC, etc. [7]–[28]. Among then available power quality enhancement devices, the UPQC has better sag/swell compensation capability. Three significant control approaches for UPQC can be found to control the sag on the system:

1) active power control approach in which an in-phase voltage is injected through series inverter [16]–[22], popularly known as UPQC-P;
2) reactive power control approach in which a quadrature voltage is injected [23], [24], known as UPQC-Q; and
3) a minimum VA loading approach in which a series voltage is injected at a certain angle, [25]–[28], in this paper called as UPQC-VAmin.

Among the aforementioned three approaches, the quadrature voltage injection requires a maximum series injection voltage, whereas the in-phase voltage injection requires the minimum voltage injection magnitude. In a minimum VA loading approach, the series inverter voltage is injected at an optimal angle with respect to the source current. Besides the series inverter injection, the current drawn by the shunt inverter, to maintain the dc link voltage and the overall power balance in the network, plays an important role in determining the overall UPQC VA loading. The reported paper on UPQC-VAmin is concentrated on the optimal VAload of the series inverter of UPQC.

Fig. 1. Unified power quality conditioner (UPQC) system configuration.
especially during voltage sag condition [25]–[28]. Since
an out of phase component is required to be injected for
voltage swell compensation, the suggested VA loading in
UPQC-VA\textsubscript{min} determined on the basis of voltage sag,
may not be at optimal value. A detailed investigation on
VA loading in UPQC-VA\textsubscript{min} considering both voltage sag
and swell scenarios is essential. In the paper [15], the
authors have proposed a concept of power angle control
(PAC) of UPQC. The PAC concept suggests that with
proper control of series inverter voltage the series
inverter successfully supports part of the load reactive
power demand, and thus reduces the required VA rating
of the shunt inverter. Most importantly, this coordinated
reactive power sharing feature is achieved during normal
steady-state condition without affecting the resultant load
voltage magnitude. The optimal angle of series voltage
injection in UPQC-VA\textsubscript{min} is computed using lookup table
or particle swarm optimization technique. These iterative
methods mostly rely on the online load power factor
angle estimation, and thus may result into tedious and
slower estimation of optimal angle. On the other hand,
the PAC of UPQC concept determines the series injection
angle by estimating the power angle δ. The angle δ
is computed in adaptive way by computing the
instantaneous load active/reactive power and thus,
ensures fast and accurate estimation.

Similar to PAC of UPQC, the reactive power flow
control utilizing shunt and series inverters is also done in
a unified power flow controller (UPFC) [4], [5]. A UPFC
is utilized in a power transmission system whereas a
UPQC is employed in a power distribution system to
perform the shunt and series compensation
simultaneously. The power transmission systems are
generally operated in balanced and distortion-free
environment, contrary to power distribution systems that
may contain dc component, distortion, and unbalance.
The primary objective of a UPFC is to control the flow of
power at fundamental frequency. Also, while performing
this power flow control in UPFC the transmission
network voltage may not be maintained at the rated
value. However, in PAC of UPQC the load side voltage
is strictly regulated at rated value while performing load
reactive power sharing by shunt and series inverters. In
this paper, the concept of PAC of UPQC is further
expanded for voltage sag and swells conditions. This
modified approach is utilized to compensate voltage
sag/swell while sharing the load reactive power between
two inverters. Since the series inverter of UPQC in this
case delivers both active and reactive powers, it is given
the name UPQCS (S for complex power). The key
contributions of this paper are outlined as follows.
1) The series inverter of UPQC-S is utilized for
simultaneous voltage sag/swell compensation and
load reactive power compensation in coordination
with shunt inverter.
2) In UPQC-S, the available VA loading is utilized to its
maximum capacity during all the working conditions
contrary to UPQC-VA\textsubscript{min} where prime focus is to
minimize the VA loading of UPQC during voltage
sag condition.
3) The concept of UPQC-S covers voltage sag as well as
swell scenario.

In this paper, a detailed mathematical formulation of
PAC for UPQC-S is carried out. The feasibility and
effectiveness of the proposed UPQC-S approach are
validated by simulation as well as experimental results.

![Fig. 2. Concept of PAC of UPQC.](image)

II. FUNDAMENTALS OF PAC CONCEPT

AUPQC is one of the most suitable devices to control the
voltage sag/swell on the system. The rating of a UPQC is
governed by the percentage of maximum amount of
voltage sag/swell need to be compensated [19]. However,
the voltage variation (sag/swell) is a short duration power
quality issue. Therefore, under normal operating
condition, the series inverter of UPQC is not utilized up
to its true capacity. The concept of PAC of UPQC
suggests that with proper control of the power angle
between the source and load voltages, the load reactive
power demand can be shared by both shunt and series
inverters without affecting the overall UPQC rating [15].

The phasor representation of the PAC approach under a
rated steady-state condition is shown in Fig. 2 [15].
According to this theory, a vector f_{in} with proper
magnitude V_s and phase angle ϕ_s when injected through series inverter gives a power angle δ boost between the source V_s and resultant load V'_l voltages maintaining the same voltage magnitudes. This power angle shift causes relative phase advancement between the supply voltage and resultant load current I'_l, denoted as angle β. In other words, with PAC approach, the series inverter supports the load reactive power demand and thus, reducing the reactive power demand shared by the shunt inverter.

For a rated steady-state condition

$$|V_s| = |V_l| = |V'_l| = k.$$

Using Fig. 2, phasor V_s can be defined as [15]

$$V_s = V_{\text{Sr}} = k \left(\sqrt{2}, \frac{\sqrt{1 + \cos \delta}}{2} \right)$$

$$= \left(k, \sqrt{2}, \frac{\sqrt{1 + \cos \delta}}{2} \right)$$

where

$$\delta = \sin^{-1} \left(\frac{Q_{Sr}}{P_{Sr}} \right).$$

Fig. 3. Voltage sag and swell compensation using UPQC-P and UPQC-Q: phasor representation. (a) Voltage Sag (UPQC-P). (b) Voltage Sag (UPQC-Q). (c) Voltage Swell (UPQC-P). (d) Voltage Swell (UPQC-Q).

III. VOLTAGE SAG/SWELL COMPENSATION UTILIZING UPQC-P AND UPQC-Q

The voltage sag on a system can be compensated through active power control [16]–[22] and reactive power control [23], [24] methods. Fig. 3 shows the phasor representations for voltage sag compensation using active power control as in UPQC-P [see Fig. 3(a)] and reactive power control as in UPQC-Q [see Fig. 3(b)]. Fig. 3(c) and (d) shows the compensation capability of UPQC-P and UPQC-Q to compensate a swell on the system. For a voltage swell compensation using UPQC-Q [see Fig. 3(d)], the quadrature component injected by series inverter does not intersect with the rated voltage locus. Thus, the UPQC-Q approach is limited to compensate the sag on the system. However, the UPQC-P approach can effectively compensate both voltage sag and swell on the system. Furthermore, to compensate an equal percentage of sag, the UPQC-Q requires larger magnitude of series injection voltage than the UPQC-P. Interestingly, UPQC-Q also gives a power angle shift between resultant load and source voltages, but this shift is a function of amount of sag on the system. Thus, the phase shift in UPQC-Q cannot be controlled to vary the load reactive power support.

Additionally, the phase shift in UPQC-Q is valid only during the voltage sag condition. Therefore, in this paper, PAC concept is integrated with active power control approach to achieve simultaneous voltage sag/swell compensation and the load reactive power support utilizing the series inverter of UPQC. This new approach in which the series inverter of UPQC performs dual functionality is named as UPQC-S. The significant advantages of UPQC-S over other approaches are given as follows.

1) The series inverter of UPQC-S can support both active power (for voltage sag/swell compensation) and reactive power (for load reactive power compensation) simultaneously and hence the name UPQC-S (S for complex power).

2) The available VA loading of UPQC is utilized to its maximum capacity and thus, compared to general UPQC operation for equal amount of sag compensation, the required rating of shunt inverter in UPQC-S will be smaller.

IV. PAC APPROACH UNDER VOLTAGE SAG CONDITION
Consider that the UPQC system is already working under PAC approach, i.e., both the inverters are compensating the load reactive power and the injected series voltage gives a power angle \(\delta \) between resultant load and the actual source voltages. If a sag/swell condition occurs on the system, both the inverters should keep supplying the load reactive power, as they were before the sag. Additionally, the series inverter should also compensate the voltage sag/swell by injecting the appropriate voltage component. In other words, irrespective of the variation in the supply voltage the series inverter should maintain same power angle \(\delta \) between both the voltages. However, if the load on the system changes during the voltage sag condition, the PAC approach will give a different \(\delta \) angle. The increase or decrease in new \(\delta \) angle would depend on the increase or decrease in load reactive power, respectively.

Let us represent a vector \(V_{S1} \) responsible to compensate the load reactive power utilizing PAC concept and vector \(V_{S2} \) responsible to compensate the sag on the system using active power control approach. Thus, for simultaneous compensation, as noticed from Fig. 4, the series inverter should now supply a component which would be the vector sum of \(V_{S1} \) and \(V_{S2} \). This resultant series inverter voltage \(V_S \) will maintain the load voltage magnitude at a desired level such that the drop in source voltage will not appear across the load terminal. Furthermore, the series inverter will keep sharing the load reactive power demand.

V. PAC APPROACH UNDER VOLTAGE SWELL CONDITION

The phasor representation for PAC of UPQC-S during a voltage swell on the system is shown in Fig. 5. Let us represent a vector \(V_{S3} \) responsible to compensate the swell on the system using active power control approach. For simultaneous compensation, the series inverter should supply the \(V_{S1} \) component to support the load reactive power and \(V_{S3} \) to compensate the swell on the system. The resultant series injected voltage \(V_S \) would maintain the load voltage magnitude at a desired level while supporting the load reactive power. For voltage swell compensation using active power control approach

\[V_S = V_{S1} - V_{S3} \]

\[(26) \]

![Fig. 5. Current-based phasor representation of the proposed UPQC-S approach under voltage swell condition.](image)

For simultaneous load reactive power and voltage swell compensations

\[V_S = V_{S1} \]

\[V_S = V_{S1} + V_{S2} \]

\[\angle \theta = \tan^{-1} \left(\frac{\sin \delta}{\cos \delta} \right) \]

\[\angle \theta = \tan^{-1} \left(\frac{\sin \delta}{\cos \delta} \right) \]

\[\angle \theta = \tan^{-1} \left(\frac{\sin \delta}{\cos \delta} \right) \]

VI. ACTIVE–REACTIVE POWER FLOW THROUGH UPQC-S

The per-phase active and reactive powers flow through the UPQC-S during the voltage sag/swell is determined in this section. As the performance equations for series and shunt inverters are identical for both sag and swell conditions, only sag condition is considered to determine the equations for active and reactive power.

A. Series Inverter of UPQC-S
For active power
\[P^e_S = V^e_S \cdot I^e_S \cdot \cos \phi^e_S \] \hspace{1cm} (36)

From Fig. 5
\[P^e_S = V^e_S \cdot I^e_S \cdot \cos(180^\circ - \psi) \] \hspace{1cm} (37)
\[P^r_S = V^r_S \cdot I^r_S \cdot \sin(\psi) \] \hspace{1cm} (38)
\[P^r_S = -V^r_S \cdot I^r_S \cdot \sin(\psi) \] \hspace{1cm} (39)
\[P^r_S = -I^r_S \cdot k \cdot (n_0 \cdot \cos \delta) \] \hspace{1cm} (40)
\[I^r_S = I^r_S = k \cdot I_L \cdot \cos \phi^e_L \] \hspace{1cm} (41)

Therefore,
\[P^r_S = P^r_S = -k \cdot (n_0 \cdot \cos \delta) \cdot (P_L) \] \hspace{1cm} (42)

For reactive power
\[Q^e_S = V^e_S \cdot I^e_S \cdot \sin \phi^e_S \] \hspace{1cm} (43)

From Fig. 5
\[Q^e_S = V^e_S \cdot I^e_S \cdot \sin(180^\circ - \psi) \] \hspace{1cm} (44)
\[Q^r_S = V^r_S \cdot I^r_S \cdot \sin(\psi) \] \hspace{1cm} (45)
\[Q^r_S = V^r_S \cdot I^r_S \cdot \sin(\psi) \] \hspace{1cm} (46)

Therefore,
\[Q^r_S = Q^r_S - k \cdot \sin \phi^e_S \cdot \sin \phi^e_S \] \hspace{1cm} (47)

Using (42) and (47), the active and reactive power flow through series inverter of UPQC-S during voltage sag/swell condition can be calculated.

B. Shunt Inverter of UPQC-S

The active and reactive power handled by the shunt inverter as seen from the source side is determined as follows.

Using (48) and (49), the active and reactive power handled by the shunt inverter of the proposed UPQC-S approach.

For active power
\[P^e_S = V^e_S \cdot I^e_S \cdot \cos \phi^e_S \] \hspace{1cm} (48)

From Fig. 7
\[P^e_S = n_0 \cdot k \cdot I^e_L \cdot (\sin \delta) \] \hspace{1cm} (49)
\[P^e_S = -n_0 \cdot k \cdot I^e_L \cdot (\sin \delta) \] \hspace{1cm} (50)
\[I^e_S = \frac{(k \cdot I_L \cdot \cos \delta) \cdot (n_0 \cdot \cos(\beta) - k_0 \cdot \cos \delta)}{k_0} \] \hspace{1cm} (51)

For reactive power
\[Q^e_S = V^e_S \cdot I^e_S \cdot \sin \phi^e_S \] \hspace{1cm} (52)

From Fig. 7
\[Q^e_S = n_0 \cdot k \cdot I^e_L \cdot (\sin \beta) \] \hspace{1cm} (53)
\[Q^e_S = \frac{(k \cdot I_L \cdot \sin \beta)}{k_0} \] \hspace{1cm} (54)

Using (51) and (54), the active and reactive power flow through shunt inverter of UPQC-S during voltage sag/swell condition can be calculated and utilized to determine the overall UPQC-S VA loading.

VII. UPQC-S CONTROLLER

A detailed controller for UPQC based on PAC approach is described in [15]. In this paper, the generation of reference signals for series inverter is discussed. Note that, as the series inverter maintains the load voltage at desired level, the reactive power demanded by the load remains unchanged (assuming load on the system is constant) irrespective of changes in the source voltage magnitude. Furthermore, the power angle \(\delta \) is maintained at constant value under different operating conditions. Therefore, the reactive power shared by the series inverter and hence by the shunt inverter changes as given by (47) and (54). The reactive power shared by the series and shunt inverters can be fixed at constant values by allowing the power angle \(\delta \) to vary under voltage sag/swell condition.

The control block diagram for series inverter operation is shown in Fig. 6. The instantaneous power angle \(\delta \) is determined using the procedure give in [15]. Based on the system rated specifications, the value of the desired load voltage is set as reference load voltage \(k \). The instantaneous value of factors \(k'e \) and \(n'e \) is computed by measuring the peak value of the supply voltage in real time. The magnitudes of series injected voltage \(V_S \) and...
its phase angle ϕ_r are then determined using (15) and (17). A phase locked loop is used to synchronize and to generate instantaneous time variable reference signals

The reference signals thus generated give the necessary series injection voltages that will share the load reactive power and compensate for voltage sag/swell as formulated using the proposed approach. The error signal of actual and reference series voltage is utilized to perform the switching operation of series inverter of UPQC-S. The control diagram for the shunt inverter is as given in [15].

VIII. SIMULATION RESULTS

The performance of the proposed concept of simultaneous load reactive power and voltage sag/swell compensation has been evaluated by simulation. To analyze the performance of UPQC-S, the source is assumed to be pure sinusoidal. Furthermore, for better visualization of results the load is considered as highly inductive. The supply voltage which is available at UPQC terminal is considered as three phase, 60 Hz, 600 V (line to line) with the maximum load power demand of 15 kW + j 15 kVAR (load power factor angle of 0.707 lagging).

The simulation results for the proposed UPQC-S approach under voltage sag and swell conditions are given in Fig.7. Before time t_1, the UPQC-S system is working under steady state condition, compensating the load reactive power using both the inverters. A power angle δ of 21° is maintained between the resultant load and actual source voltages. The series inverter shares 1.96 kVAR per phase (or 5.8 kVAR out of 15 kVAR) demanded by the load. Thus, the reactive power support from the shunt inverter is reduced from 15 to 9.2 kVAR by utilizing the concept of PAC. In other words, the shunt inverter rating is reduced by 25% of the total load kilovolt ampere rating. At time $t_1 = 0.6$ s, a sag of 20% is introduced on the system (sag last till time $t = 0.7$ s).

Enlarged power angle δ during voltage sag condition. (j) Enlarged power angle δ during voltage swell condition.

![Simulation results: performance of the proposed UPQC-S approach under voltage sag and swell conditions.](image-url)
Between the time period $t = 0.7 \text{ s}$ and $t = 0.8 \text{ s}$, the system is again in the steady state. A swell of 20% is imposed on the system for a duration of $t_2 = 0.8 - 0.9 \text{ s}$.

TABLE I

LOSSES ASSOCIATED WITH UPQC UNDER DIFFERENT SCENARIOS

<table>
<thead>
<tr>
<th>Condition</th>
<th>I_{sh} (rms)</th>
<th>I_{sw} (rms)</th>
<th>V_{sh} (rms)</th>
<th>P_{loss}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steady State</td>
<td>20.20 A</td>
<td>-</td>
<td>0.74 A</td>
<td>0.74 %</td>
</tr>
<tr>
<td>(1) Without PAC approach and Series transformer in operation</td>
<td>20.20 A</td>
<td>21.90 A</td>
<td>4.60 V</td>
<td>1.20 %</td>
</tr>
<tr>
<td>(2) Without PAC approach and Series inverter in operation</td>
<td>13.18 A</td>
<td>15.55 A</td>
<td>9.3 V</td>
<td>1.20 %</td>
</tr>
<tr>
<td>Voltage Sag</td>
<td>20.90 A</td>
<td>25.05 A</td>
<td>48.4 V</td>
<td>2.00 %</td>
</tr>
<tr>
<td>(1) Without PAC approach</td>
<td>11.90 A</td>
<td>25.05 A</td>
<td>89.4 V</td>
<td>1.02 %</td>
</tr>
<tr>
<td>(2) With PAC approach</td>
<td>14.04 A</td>
<td>17.45 A</td>
<td>48.3 V</td>
<td>1.38 %</td>
</tr>
<tr>
<td>Voltage Swell</td>
<td>20.00 A</td>
<td>17.45 A</td>
<td>48.3 V</td>
<td>1.38 %</td>
</tr>
<tr>
<td>(1) Without PAC approach</td>
<td>14.04 A</td>
<td>17.45 A</td>
<td>110.5 V</td>
<td>1.30 %</td>
</tr>
</tbody>
</table>

IX. CONCLUSION

In this paper, a new concept of controlling complex power (simultaneous active and reactive powers) through series inverter of UPQC is introduced and named as UPQC-S. The proposed concept of the UPQC-S approach is mathematically formulated and analyzed for voltage sag and swell conditions. The developed comprehensive equations for UPQC-S can be utilized to estimate the required series injection voltage and the shunt compensating current profiles (magnitude and phase angle), and the overall VA loading both under voltage sag and swell conditions.

The simulation and experimental studies demonstrate the effectiveness of the proposed concept of simultaneous voltage sag/swell and load reactive power sharing feature of series part of UPQC-S. The significant advantages of UPQC-S over general UPQC applications are: 1) the multifunction ability of series inverter to compensate voltage variation (sag, swell, etc.) while supporting load reactive power; 2) better utilization of series inverter rating of UPQC; and 3) reduction in the shunt inverter rating due to the reactive power sharing by both the inverters.

APPENDIX

The important parameters used for laboratory prototype of UPQC-S are as follows:

Source: Three-phase ac supply, 35 V (rms), $f = 60 \text{ Hz}$; Load: 40-Ω resistance in parallel with 50-mH inductance giving 0.6lagging power factor; DC bus: dc bus capacitor $= 1100 \mu F/220 \text{ V}$, reference dc bus voltage $= 150 \text{ V}$; UPQC: shunt inverter coupling inductance $= 5 \text{ mH}$, shunt inverter switching type = analog hysteresis current controller with average switching frequency between 5 and 7 kHz, series inverter coupling inductance $= 2 \text{ mH}$, series inverter ripple filter capacitance $= 40 \mu F$, series inverter switching type = analog triangular carrier pulse width modulation with a fixed frequency of 5 kHz, series voltage injection transformer turn ratio $= 1:3$, DSP sampling time $= 50 \mu s$.

REFERENCES
