Low Power Gating Scan Cell For Shift Power Reduction Considering Both This Scan Chain And Combinational Part

Y MOHITHA
Student, ECE Department
Nalla Narasimha Reddy Educational Society’s Group of Institutions

B SWATHI
Student, ECE Department
Nalla Narasimha Reddy Educational Society’s Group of Institutions

Abstract: Excessive power consumption during test application time has severely negative effects on chip reliability since it has an inevitable role in hot spots that appear, degradation of performance, circuit premature destruction, and functional failures. In scan-based designs, rippling transitions caused by test patterns shifting along the scan chain not only elevate power consumption in the scan chain but also introduce spurious switching activities in the combinational logic. In this work, a new low power gating scan cell for scan based designs has been proposed in order to reduce power consumption in the scan chain as well as the combinational part during shifting. We have modified the conventional scan cell and augmented it with state preserving and gating logic that enables an average power reduction in combinational logic during shift mode. The new scan cell mitigates the number of transitions during shift and capture cycles. Thus, it reduces the average power consumption inside the scan cell and as a result the scan chain during scan shifting with a low impact on peak power during the capture cycle. Furthermore, due to introducing a new shorter shift path, improvements are observed in terms of propagation delay and power consumption in the scan chain during shifting. This leads to higher feasible shift frequency whereby the shift frequency is limited by the maximum power budget and hence results in reducing the test application time. The post-layout spice simulation results show a 7.21% reduction in total power consumption, an average 12.25% reduction of shift power consumption, and a 50.7% improvement in the clock (CLK)-to-shift propagation delay over the conventional scan cell in Synopsys 32/28 nm standard CMOS technology.

Keywords: switching activity; scan cell; gating logic; shift power; peak power; design for testability

Introduction

The most major concerns regarding challenges to test current high integration density circuits are the test cost and test power. On one hand, product quality requires the execution of high quality manufacturing tests and diagnostics. Such a high quality test procedure can elevate the test application time that results in high test cost. The standard scan is one of the most widely employed design-for-testability (DFT) approaches that offers a high quality test procedure by providing controllability and observability on every single storage element in the circuit-under-test (CUT). Unfortunately, scan-based architectures are very expensive in terms of power, as each scan test pattern contributes to a shift operation with high power consumption. Power consumption during testing is significantly higher than that during the normal operation. Since there is less correlation between scan test vectors generated by an Automatic Test Pattern Generation (ATPG) tool compared to the data during normal mode, high switching activities incurred in capture mode have increased the test power drastically over the chip power threshold.

On the other hand, high test power consumption not only increases the test cost, but also may cause reliability hazards or even instant damages. Reducing the switching activities at any instant of time mitigates the average power and hence the peak power of the chip. Moreover, the peak power and average power reduction during testing contributes to enhanced reliability of the test and improvement of the yield.
In this paper, the following features is presented as:

- Gating redundant transitions from the scan cell to combinational logic during shift mode.
- Reducing switching activity inside the scan cell during shift mode.

In order to achieve the above mentioned features within an integrated structure, we have modified the slave latch in the conventional master/slave scan cell with state preserving and gating abilities. The proposed gating scan architecture introduces a new short shift path that improves both shift and capture propagation delays as well as power consumption in the scan chain during shift mode. This makes shifting at higher frequency possible in those cases where the maximum shift frequency has been bounded by the maximum allowable power consumption. Therefore, the proposed gating scheme improves the test application time over existing gating solutions. Since state preserving and gating logics have been embedded as part of the slave latch in the proposed gating scan cell, the area overhead is as low as two transistors that are sharable by several scan cells. The proposed structure contributes to the average power reduction in the scan architecture (combinational logic and scan chain) during shift mode while not causing high peak power during capture mode. In gating methods, the main source of excessive peak power during capture mode is the switching activities in the gating elements when the mode changes from shift to capture mode or vice versa. Excessive peak power can be avoided by reducing the level of switching activity during testing. Therefore, the proposed structure is able to control the peak power violations by reducing the switching activities in other parts of the scan cells.

Power Estimation in Digital VLSI Circuits:

Regardless of short-circuit power which is consumed due to the short-circuit current flows between the supply voltage and ground during the slice time when all of the gate inputs are active, dynamic power is consumed during the charging and discharging of the output and internal nodes capacitance, which can be given by Equation (1):

\[P_{dyno} = P_{dyes} + P_{dyn} = \frac{1}{2} \left(V_{DD} \sum \alpha_i C_{ii} + V_{DD} \sum \alpha_j C_{ij} V_{ij} \right) \]

where, \(P_{dyes} \) and \(P_{dyn} \) correspond to the dynamic power consumption at the output load capacitance and the internal nodes capacitance, respectively. The switching activity at gate \(i \) output and that at the \(j \)th internal node of the \(i \)th gate are represented by \(\alpha_i \) and \(\alpha_{ij} \), respectively. \(V_{ij} \) corresponds to the voltage swing which is generally equal to \(V_{DD} - V_{th} \). Finally, \(C_{ii} \) and \(C_{ij} \) are used for gate \(i \) load capacitance and the \(j \)th internal capacitance at gate \(i \). The average power consumption is the total energy consumed during the test session divided by the test time. This parameter is even more important than the energy as hot spots and reliability problems may be caused by constantly high power consumption. The average power consumed during the test session is presented by Equation (2), where \(T \) is the clock period and \(L \) is the total number of clocks during the test phase.

\[P_{average} = E_{total}/(L\cdot T) \]

The peak power consumption corresponds to the highest amount of power consumption during one clock cycle. If the peak power exceeds the circuit power threshold for several clock cycles, the correct function of the entire circuit is no longer guaranteed. Peak power can be expressed as follows:

\[P_{peak} = \text{Max} P_{inst}(V_k) = \text{Max}_k \left(E_{vk}/t_{small} \right) \]

where, \(P_{inst}(V_k) \) (instantaneous power) determines the amount of power consumed during a small instant of time \(t_{small} \) after the application of the test vector \(V_k \). \(E_{vk} \) corresponds to the energy consumed in the circuit after application of successive input vectors \((V_k−1,V_k)\).

1. **Overview of Hardware-Based Test Power Reduction Approaches**

A significant number of techniques that attempt to reduce power in the combinational part of scan chain during the test application time fall into the category of hardware-based approaches. The hardware-based approaches require additional hardware to be added into the design, and are easy to be integrated with different embedded compression techniques. Clock gating is one of the well-known power reduction techniques in the wide range of hardware-based methods.
This method offers an algorithm for constructing an activity-sensitive clock tree that combines nodes with the same activity pattern to disconnect the clock signal efficiently. The clock skew problem in the normal mode of operation is the main disadvantage of the clock gating technique. In addition, a high complexity clock controller circuit turns out to be another drawback for this category of hardware-based approaches. Another approach known as scan partitioning splits the scan chain into multiple partitions and activates only one partition at any time interval. The partitioning scheme limits the scan chain transitions from propagating to combinational logic during shifting by activating only one scan path at any time interval. The previous partitioning approach on the first level supply (FLS) gating approach that extends the partitioning to capture cycle as well. To mutually exclusively activate each segment, several clock cycles, both in shift and capture mode, are required which results in a higher test application time. Both of these techniques introduce a high area penalty due to using high complexity controlling circuits. A segment regrouping algorithm has been proposed by Yamato et al which identifies an optimal combination of scan segments to be clocked simultaneously and results in further instantaneous shift power reduction in the scan chain. These techniques aim to reduce the amount of switching in the scan chain and cannot completely prevent redundant power loss in the combinational logic. The drawbacks of the scan chain partitioning approaches are: 1. They result in test time complexity increase; 2. They may cause data dependency problems; 3. They are depending on complicated control circuits for the activation of the proper partition at the right time; thus, they are expensive in terms of area; 4. Although significant achievement in test power reduction has been gained due to scan chain reordering and partitioning techniques, none of the solutions within this category have completely eliminated spurious switching activities in the combinational logic during shift mode.

One of the most straight-forward methods for shift power reduction is to reduce switching activity in the combinational logic by isolating the stimulus path of scan cells from combinational logic during the shift cycle, since the major source of dynamic power in CUT is the propagation of ripple transitions from the scan cells to the combinational logic during scan shifting. These methods are less intrusive to the original designs compared with the aforementioned approaches, and they are independent of the test set. However, they may degrade the performance due to the inserted logic between the scan cells’ stimuli paths and the combinational part. Moreover, depending on the logic on the scan cell output, they still may not be able to block all switching from propagating to the combinational logic in the beginning of the shift cycle if the logic on the scan cell output differs from the gating logic. Thus, the unblocked transient can still propagate to the deeper level of the combinational logic, causing many transitions at circuit internal lines before reaching the steady state.

As shown in Figure 1, it bypasses the slave latch with an alternative low cost dynamic latch in the scan shifting path. Therefore, it can successfully eliminate all transitions to the combinational logic during shift mode. However, there is no improvement in the level of power consumption inside the scan cell and as a result in the scan chain.

![Figure 1. Modified scan flip-flop for low power delay fault testing [35].](image-url)
Partial gating methods have been proposed to reduce the full gating penalties in area overhead and performance degradation. By having the proper selection of scan cells on non-critical paths to be gated and their gating values, they try to maximize the shift power reduction with acceptable performance degradation. The most recently reported partial gating methods such as those in gate a sub-set of scan cells not only during shift mode but also during capture mode in order to reduce peak power in addition to shift power reduction. However, in large industrial designs, scan cells have large fan out cones. Thus, un-gated scan cells in the partial gating method can still cause a great amount of switching activities in the combinational logic. Moreover, in both existing full gating and partial gating techniques, significant power is consumed in the gating elements themselves, which causes the peak power to increase from 5% to 60% in all the benchmark circuits when the gating overhead was considered. This is due to the large switching activity occurring in the gating logic when the scan mode changes to capture mode or vice versa. The missing part of both existing full gating and partial gating methods is that they have limited their approaches only to power reduction in combinational circuits during shift cycles without highlighting that shift power consumption is also related to the total amount of power consumed in the scan chain besides combinational logic.

2. Proposed Low Power Gating Scan Cell

During the shift cycle, the rippling transitions cause great switching activities in the scan chain. The propagation of this switching activity into the combinational part contributes to large redundant transitions in the circuit lines. In order to suppress the scan chain transitions from propagating during shift cycles, we have proposed a low power gating scan cell which contains a modified slave latch augmented by a gating logic. For constructing the gating logic, we have utilized a transmission gate and an inverter to gate the scan output to the combinational logic as illustrated in Figure 2a. It uses the transmission gate to cut off the connection between the inverted scan cell output \(Q \) and the output \(Q \) of the scan cells during shift mode. As a result, the switching activities on the \(Q \) during shift mode does not affect the scan cell output \(Q \) which is used for driving the combinational logic. High resistance offered by an inactive transmission gate reduces the leakage current in the transmission gate during shift mode and the response capture cycle since the transmission gate is idling in these intervals. In addition, the transmission gate is a strong driver that feeds the gating logic inverter and pseudo primary inputs during normal/capture mode. Figure 2a-c depicts the proposed low power gating scan cell and the data propagation paths during shift and normal/capture modes of operation, respectively.
In order to totally prevent the unnecessary transitions to the combinational logic during shift mode, a state preserving logic has been proposed. It is a feedback structure that refreshes the scan output \(Q \) with the previous logic state. The two pull-up and pull-down sleep transistors are active during shift mode which cause the state preserving logic to fix the scan output logic to the same previous logic. However, unlike gating logic, this section is transparent in the normal/capture mode of operation since the sleep transistors are inactive. During this mode, the state preserving logic consumes low leakage power since the two sleep transistors cut off the power rail. The two pull-up and pull-down transistors also contribute to active leakage reduction due to the stacking effect. These can alleviate the effect of state preserving on peak power during normal/capture mode. The transmission gate, pull-up, and pull-down sleep transistors are driven by the shift enable signal \(SE \) so no extra control signal is required. Sharing the pull-up and pull-down transistors of the state preserving logic among all the scan cells can alleviate the scan chain area overhead.

It is aforementioned that one of the main concerns about gating techniques is the elevated peak power beyond the chip power budget caused by gating logic toggling between gating (shift) mode and transparent (normal/capture) mode. It is noteworthy that the proposed scheme aims to take advantage of the high potential of scan gating approaches in shift power reduction and offers a more practicable scheme by maintaining the scan gating’s average and peak power consumption during capture mode (which are the general side effects of scan gating approaches) as close as possible to that of the conventional scan cell.

3. Experimental Results and Comparisons

The proposed low power gating scan cell has been implemented through conducting a full-custom layout design incorporating the Synopsys Custom Designer and Laker. Figure 5 shows the full-custom layout design for the proposed gating scan cell. Next, in order to verify the proposed scan cell, a set of post-layout simulations has been carried out on the parasitic included spice netlist using HSPICE in Synopsys 32/28 nm CMOS technology with the supply voltage of 1.05 Volt and clock frequency 250 MHz at room temperature. The simulation results were then compared to the conventional scan cell and the modified scan cell presented in in terms of power, propagation delay, power-delay-product (PDP), and area overhead. The power consumption and propagation delay were observed by applying randomly generated waveforms.

Figure 2. (a) Proposed low power gating scan cell with gating and state preserving logic; (b) Data propagation path in shift mode; (c) Data propagation path in normal/capture mode.
The simulated output waveform of each scan cell to the combinational logic has been shown for the conventional scan cell, proposed gating scan cell, and modified scan cell in Figure 6. It is clearly seen that unlike the conventional scan cell, the proposed gating scan cell and the modified scan cell have no transitions in the combinational logic during the shift session, as the scan cell output "Q_new_Comb" remains the same while the shift enable (SE) is high. Note that, "Q_new_Comb" is the scan cell output connecting to the combinational part.

Figure 5. Full-custom layout design for the proposed low power gating scan cell in 32/28 nm CMOS technology using Laker.

Figure 6. Post-layout simulated output waveform of (a) Conventional Scan Cell; (b) Modified Scan Cell; and (c) Proposed Gating Scan Cell at 250 MHz clock frequency.

The comparative analysis results on total power consumption for each scan cell are shown in Table 1. To evaluate the total power consumption, identical random patterns are applied to each scan cell and the total power consumption during both test and normal modes of operation is observed.

<table>
<thead>
<tr>
<th>Scan Cell Type</th>
<th>Conventional Scan Cell</th>
<th>Proposed Low Power Gating Scan Cell</th>
<th>Modified Scan Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumed (W)</td>
<td>7.662 x 10^2</td>
<td>7.096 x 10^2</td>
<td>9.729 x 10^2</td>
</tr>
<tr>
<td>% Imp.</td>
<td>7.21</td>
<td>7.21</td>
<td>26.07</td>
</tr>
</tbody>
</table>

Table 2 shows the improvement of power
consumption for our proposed scan cell and the modified scan cell over the conventional scan cell in four successive shift cycles. The proposed scan cell outperforms both the conventional scan cell and modified scan cell in all shift cycles. This is because it exploits a shorter shift path with less complexity compared to the other mentioned scan cells.

Table 2. Comparison of the average power consumption during Shift mode.

<table>
<thead>
<tr>
<th></th>
<th>Conventional Scan Cell</th>
<th>Proposed Low Power Gating Scan Cell</th>
<th>Modified Scan Cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Con. (W)</td>
<td>8.9381 × 10⁻⁷</td>
<td>7.4193 × 10⁻⁷</td>
<td>1.0064 × 10⁻⁶</td>
</tr>
<tr>
<td>Power Con. (W)</td>
<td>7.4784 × 10⁻⁷</td>
<td>6.6012 × 10⁻⁷</td>
<td>8.7580 × 10⁻⁶</td>
</tr>
<tr>
<td>% Imp.</td>
<td>16.99</td>
<td>11.72</td>
<td>17.11</td>
</tr>
<tr>
<td>Power Con. (W)</td>
<td>7.5832 × 10⁻⁷</td>
<td>6.7539 × 10⁻⁷</td>
<td>1.0704 × 10⁻⁶</td>
</tr>
<tr>
<td>% Imp.</td>
<td>10.93</td>
<td>13.37</td>
<td>41.15</td>
</tr>
<tr>
<td>Power Con. (W)</td>
<td>7.6658 × 10⁻⁷</td>
<td>6.6542 × 10⁻⁷</td>
<td>8.9380 × 10⁻⁷</td>
</tr>
<tr>
<td>% Imp.</td>
<td>13.37</td>
<td>16.62</td>
<td>21.48</td>
</tr>
<tr>
<td>Average</td>
<td>7.9158 × 10⁻⁷</td>
<td>6.8571 × 10⁻⁷</td>
<td>9.6160 × 10⁻⁷</td>
</tr>
</tbody>
</table>

Future Works

To evaluate and verify the impact of the proposed low power gating scan cell on the power reduction of the whole circuit during the test (shift) mode of operation in benchmark circuits, a library characterization process will be conducted in order to develop a standard power-aware scan cell based on the proposed low power gating scan cell timing and power characteristics. The exact amount of reduction in test application time therefore will be presented according to static timing analysis (STA) reports.

3. Conclusions

One of the less intrusive and effective solutions to reduce shift power significantly, independent of the test set, is scan gating techniques. However, significant delay on signal propagation paths, large area overhead, high switching activity, and finally undesired impacts on peak power all caused by gating logics, has made them less practical for large industrial circuits. Most previous works successfully reduce shift power in combinational logic only, without considering the scan chain as the main source of power consumption during the shifting phase. In this paper, we designed and implemented an area-efficient low power gating scan cell as an integrated solution for shift power reduction in both the scan chain and combinational logic. Since the gating scan cell reduces power consumption inside the scan cell compared with the conventional scan cell, the total power consumption is reduced during the shift (test) mode of operation. The proposed gating scan cell is a modified scan cell augmented by gating and state preserving logics to gate and hold the scan cells' stimulus path while maintaining peak power under a certain threshold. Choosing a new data shift path through a less complex propagation path in the proposed gating scan cell incorporates further power reduction in the scan chain in addition to improving the critical shift timing and hence, leads to test application time reduction.

References

7. Chen, C.; Kang, C.; Sarrafzadeh, M. Activity-Sensitive Clock Tree Construction for Low

